
3623Sensors and Materials, Vol. 34, No. 9 (2022) 3623–3636
MYU Tokyo

S & M 3065

*Corresponding author: e-mail: hsienwei.tseng@gmail.com
**Corresponding author: e-mail: cfyang@nuk.edu.tw
https://doi.org/10.18494/SAM4025

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Memory-efficient Very Large Scale Integration Architecture of 2D
Algebraic-integer-based Daubechies Discrete Wavelet Transform

Tiancai Lan,1 Chih-Hsien Hsia,2 Po-Ting Lai,3
Hsien-Wei Tseng,4* and Cheng-Fu Yang5,6**

1School of Mathematics and Information Engineering, Longyan University, Longyan 364012, China
2Department of Computer Science and Information Engineering, National Ilan University, Ilan 260, Taiwan

3Department of CS12/HPC1/SRD2, MediaTek, Hsinchu City 300, Taiwan
4College of Artificial Intelligence, Yango University, Mawei District, Fujian 350015, China

5Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 811, Taiwan
6Department of Aeronautical Engineering, Chaoyang University of Technology, Taichung 413, Taiwan

(Received July 4, 2022; accepted August 25, 2022)

Keywords: algebraic integer, Daubechies wavelet, transpose memory, interlaced read scan algorithm

 Low memory requirement and reduced latency have been two major concerns in the
implementation of the 2D Daubechies discrete wavelet transform. In this study, a multilevel 2D
Daubechies-4 (Daub-4) wavelet filter architecture based on an algebraic integer (AI) is
investigated. This architecture can improve the traditional Daub-4 very large scale integration
(VLSI) architecture design and reduce the number of adders in a 1D Daub-4 filter module
architecture. The is because the AI-based multilevel architecture does not require any multipliers
and can improve the efficiency of accurate calculations. In addition, to solve the problem of the
large transpose memory generated by multimedia chip design, we examine the uses of N × N
image inputs in the calculation of the Daub-4 filter by importing them into the interlaced read
scan algorithm. This investigated architecture not only reduces the size of the transpose memory
from N2 to 10 or 21 (in the Daub-4 and Daub-6 modes, respectively) but also speeds up the
sensing and reading of signals and the calculations. We also show that when a field-
programmable gate array is combined with the investigated system, it can enhance the
implementation of 2D multilevel AI-based Daub-4 and Daub-6 VLSI architectures.

1. Introduction

 In recent years, the transpose memory (TM) cost has been a very important problem in
multimedia IC design for the 2D discrete wavelet transform (DWT) architecture.(1,2) This
architecture is based on the Daubechies scheme and produces both time domain and frequency
domain characteristics. The DWT architecture is also suitable for applications performing image
or video compression.(3–6) The problem of the signal accuracy of DWT architectures based on
the Daubechies DWT has been researched and discussed.(7–9) For example, the Daubechies-4
(Daub-4) DWT is often applied to increase the smoothness of information, and the Daubechies-6

mailto:hsienwei.tseng@gmail.com
mailto:cfyang@nuk.edu.tw
https://doi.org/10.18494/SAM4025
https://myukk.org/

3624 Sensors and Materials, Vol. 34, No. 9 (2022)

(Daub-6) DWT is often used to analyze long signals.(10) Wavelets based on Daub-4 or Daub-6
have been used to process medical images, especially in medical image compression and texture
analysis, because the details of the images are very important.(11,12) The Daub-4 transform has
been used to increase the calculation accuracy, because it is reasonably simple to implement and
effective at preprocessing data from 32 sensors.(13) When the 2D discrete Daub-4 architecture is
combined with different algorithms, it can have different functions. For example, when it is
combined with the target coverage algorithm, the system can identify the optimal position of
each sensor to cover a maximum number of targets.(14) Madishetty et al.(15) studied a multilevel
2D Daubechies wavelet transform based on an algebraic integer (AI). The two methods that they
investigated avoided the intermediate reconstruction steps in the design process, and it was only
necessary to perform the reconstruction at the end of the analysis step.(15) In addition, the very
large scale integration (VLSI) architecture does not use multipliers except in the final
reorganization stage, which can increase its speed and reduce the area used by
hardware.(10,12,15–22)

 The Daubechies wavelet transform can be used to compress sensing data by employing a
sparsifying linear transformation for different imaging systems, including those for optical
imaging, radio astronomy, computed tomography, and magnetic resonance imaging.(21) Casson
investigated an analog domain signal processing circuit, which was used to approximate the
output of the DWT architecture used in combination with ultralow-power wearable sensors.(22)
Therefore, in this study, we investigated an architecture to combine the above-mentioned
hardware to reduce the use of TM and the reading time and enhance signal sensing and the
accuracy of calculations. In this study, the novelty of the investigated system, which includes the
DWT architecture, the AI architecture, and the VLSI architecture, is investigated to improve the
efficiency of use of TM in the above hardware and to change the filter structure to reduce the
signal sensing and reading times and increase the calculation speed. Moreover, we show that by
using the AI architecture, the hardware cost and the numbers of adders and multipliers can be
further reduced.
 In Sect. 2, we introduce the traditional 2D multilevel Daubechies wavelet transformation
architecture based on an AI architecture and present its coefficients. In Sect. 3, we investigate
the 2D multilevel Daub-4 and Daub-6 wavelet transform VLSI architectures, and we introduce
the interlaced read scan algorithm (IRSA) used for the calculation. In Sect. 4, we discuss and
analyze the results obtained by implementing the investigated architecture on a field-
programmable gate array (FPGA). Finally, a conclusion is given in Sect. 5.

2. Daubechies Filter Based on AI

2.1 Theoretical background

 The Daubechies filter has many different forms and can be designed for input signals with
values of 1 to 20.(23–25) According to the duration of the input signal, we consider a simple
example and express the input signal A(Daub-4) as(7,12,14)

Sensors and Materials, Vol. 34, No. 9 (2022) 3625

 ()-4 1 1 3 3 3 3 31 3
4 2

TDaubA = + + − − . (1)

 However, an AI can be expressed as the root of a real number or a complex polynomial(26)
and can also be used to define a coding mapping, that is, a constant can be used to accurately
represent a specific irrational number and consider the roots of the polynomial. The AI is
selected from an integer set ℤ, which contains different integer algebras, and the AI can be
expressed as

 y a b ζ= + × and 1 2 1 2y c d e fζ ζ ζ ζ= + × + × + × , (2)

where a and b are integers. The AI coding is calculated on the basis of this set. Note that this set
is sufficient to represent the coefficients of the Daub-4 and Daub-6 filters. Additionally, AI
coding can be delayed until the final stage of the calculations, and the filter coefficients of Daub-
4 and Daub-6 can be expressed as

 () []-4
3 3 11 TDaubA ζ ζ ζ ζ= + + − − , (3)

()

1 2

1 2

-6 1 2

1 2

1 2

1 2

1
5 3

10 2 2
 .
10 2 2

5 3
1

DaubF

ζ ζ
ζ ζ
ζ ζ
ζ ζ
ζ ζ
ζ ζ

+ +
 + +
 − +

=
− −

 + −

+ −

 (4)

 Therefore, both the Daub-4 and Daub-6 filters can also be expressed as the following
equations, where F1 and Fζ in the Daub-4 equation represent the two outputs generated by the
calculations. For Daub-6, after the filter operation is completed, three parts of the output are
generated: F'1, Fζ1 and Fζ2.

 ()-4
1 ·DaubF F Fζζ= + , (5)

 ()
1 2

-6
1 1 2· ·DaubF F F F= ′ + +ζ ζζ ζ , (6)

where F1 = [1 3 3 1]T, Fζ = [1 1 − 1 − 1]T, F'1 = [1 5 10 10 5 1]T, Fζ1 = [1 1 −2 −2 1 1]T,
Fζ2 = [1 3 2 −2 −3 −1]T.

3626 Sensors and Materials, Vol. 34, No. 9 (2022)

2.2	 2D	filter

 In this study, we use the Daub-4 filter to describe the multilevel architecture, the 2D encoding
operation process, and the results based on integer algebra. The operation architecture and
results of Daub-6 will be the same as those of Daub-4. Here, V and C denote a matrix and
column, respectively; thus, v is a vector point and c is a column point. The symbols represent the
two-sampling operation in the vertical and horizontal directions. The symbol ⦶ is defined as

 V ⦶ C ≜ (2 ↓ 1) [v*c0 v*c1 v*c2 ... v*cN − 1] = [v*c0 v*c2 v*c4 ... v*cN − 2], (7)

where * denotes convolution. The similar ⊖ operation can be written as

 v ⊖ C ≜ (v ⦶ CT)T. (8)

 For the first-level 2D Daub-4 analysis, the formula is

 β1
2 ⸱ A1 = F (Daub-4) ⊖ F (Daub-4) ⦶ A0, (9)

where A0 is the original matrix value of the input image. Substituting Eq. (5) into Eq. (9), we
obtain

	 β1
2 · A1 = (F1 + ζ	· Fζ) ⊖ (F1 + ζ	· Fζ) ⦶ A0 = F1 ⊖ F1 ⦶ A0 + ζ	· Fζ ⊖ F1 ⦶ A0 +

 ζ	· F1 ⊖ Fζ ⦶ A0 + ζ2 · Fζ ⊖ Fζ ⦶ A0. (10)

 When ζ 2 = 3 is substituted in Eq. (10), it can be simplified to

 () ()12
1 1 1 1· · ,A A A ζβ ζ= + (11)

where A1
(1) and A1

(ζ) are given in Fig. 1.
 In further analysis operations, a second-level analysis is performed as follows:

 β1
2 · A2 = F (Daub-4) ⊖ F (Daub-4) ⦶ A1. (12)

 Substituting Eq. (11) into Eq. (12), we obtain

	 β1
4 · A2 = F (Daub-4) ⊖ F (Daub-4) ⦶ (A1

(1) + ζ	· A1
(ζ)) = A2

(1) + ζ · A2
(ζ). (13)

 The fully expanded formulas of A2
(1) and A2

(ζ) are also given in Fig. 1.
 Equation (11) can be used to express the results of analyzing the remaining levels, for
example, the analysis results of the nth level can be expressed as

Sensors and Materials, Vol. 34, No. 9 (2022) 3627

 2 (1) ()
1 ,, 2n

n n nA A A nζβ ζ⋅ = + ⋅ ≥ (14)

where A2
(1) and A2

(ζ) are given in Fig. 1. Note that the required multiplier of 3 is achieved by
using shift and add (SAA), as ()3 1m m m⋅ = + , where m is an integer used to eliminate the
need for a multiplier and reduce hardware resource consumption.

2.3	 Multilevel	filter	analysis	architecture

 The AI-encoded Daub-4 filter is calculated using the extended integers. Thus, when a value
is input and the first level of the AI wavelet transformation has been analyzed, two parts of the
output are generated, both of which are related to its basic elements. In Fig. 2, the AI-based 2D
fourth-level Daub-4 filter architecture is taken as an example. This architecture includes N point
A0 input signals and the output results A1

(1) and A1
(ζ) after AI encoding. The output results of the

two parts are calculated on the basis of the previous input set {1, ζ}, and the values of these two
parts are calculated in the combination block and in the final reorganization stage to obtain the
final output image. The AI-based Daub-4 filter VLSI architecture requires six adders to form an
AI Daub-4 filter,(13) and each integer calculation AI block contains three AI Daub-4 filters. The
VLSI architecture of the device generates 18 adders in the AI block, as shown in Fig. 3.

3. VLSI Architecture of Improved Daubechies Hardware Filter Based on AI

 Figure 4 shows our improved Daub-4 AI filter with the VLSI architecture investigated in this
study, in which only three adders are required. Compared with the previous architectures, which
require six adders,(13) it can reduce the complexity by 50%. Each group of AI blocks contains
three Daub-4 AI filters. Therefore, only nine adders remain in the AI block. The framework can
calculate the integer, and the integer contains the ζ coefficient separately.

Fig. 1. Daub-4 filter.

3628 Sensors and Materials, Vol. 34, No. 9 (2022)

3.1 AI block architecture

 As shown in Fig. 5(a), there are three Daub-4 filter architectures in a 2D AI block: one
horizontal filter and two vertical filters. After each analysis, high- and low-frequency signals are
output. The two vertical Daub-4 filter architectures are required to calculate the two output
values from the horizontal direction (the second-dimension calculation), then the vertical Daub-
4 filter architectures calculate them separately for four output results. In the investigated
improved AI VLSI architecture, a first in, first out (FIFO) memory architecture is used to

Fig. 4. Improved Daub-4 AI filter VLSI architecture.

Fig. 3. VLSI architecture of Daub-4 AI filter.

Fig. 2. Block diagram of 2D multilevel filter based on AI.

Sensors and Materials, Vol. 34, No. 9 (2022) 3629

replace the vertical data. As shown in Fig. 5(b), the output data from the horizontal direction is
stored in the FIFO memory, and only one vertical Daub-4 filter is needed to read and calculate
the four values. Regardless of the increase in the amount of input data, the FIFO memory need
only be used 10 times. Compared with the previously reported architectures, the investigated
architecture can reduce the number of adders in the AI block by 12.

3.2 IRSA

 A 2D DWT is composed of two 1D DWTs and TM. The DWT requires a large number of
calculation processes, making it prone to a large hardware cost, a long critical path, and large
TM use when the resolution of the input image is increased.(27–34) As shown in Fig. 6, we first
use an AI-based 2D Daub-4 filter as an example to illustrate the IRSA.
 We assume that an image with a matrix of size N × N is input and that the output result is
stored in the TM. After the process of the first Daub-4 filter, the high and low frequencies are
read out to the second Daub-4 filter one by one, and four sub-bands are obtained. For the output
results, the time required to access and save data in the TM increases the time required for the
outputs of the four sub-bands to be obtained by the processes of the 2D DWT. Using this
investigated architecture, the IRSA can solve the above problems and is applied to the
Daubechies AI architecture to reduce the use of TM.
 Taking a 6 × 6 input image as an example, Fig. 7(a) shows the AI-based 2D Daud-4 traditional
input reading architecture. The black pixels represent the original input image signals, and the
white pixels are the signals from the image boundary extension. During the first-dimensional
AI-based Daub-4 filter signal reading process, the four pixel values in the red frame in the left
frame of Fig. 7(a) are used to calculate the first dimension of the output (as shown by the red
pixels in the middle frame). Due to the sub-sampling, four pixels are read simultaneously to

Fig. 5. 2D first-level filter architecture: (a) traditional architecture and (b) improved architecture.

(a)

(b)

3630 Sensors and Materials, Vol. 34, No. 9 (2022)

calculate every two pixels each time. The order is based on the red, green, and blue borders.
Then, the next column is read until the end of the calculation of the last column. Next, the red,
green, and blue pixels in the middle frame are their output results, which are used to generate the
second-dimensional output [as shown in the right frame of Fig. 7(a)], and the reading order is
based on red, green, and blue frames. Then, the next line is read until the calculation of the last
line is completed, and the red, green, and blue pixels in the right frame are the output results.
The output through the first dimension is stored in the TM. The middle frame shows the second-
dimensional AI-based Daub-4 filter signal reading process, which reads four pixels from the

Fig. 6. Traditional 2D DWT.

Fig. 7. (Color online) IRSA: (a) Traditional input reading architecture and (b) improved input reading architecture.

(a)

(b)

Sensors and Materials, Vol. 34, No. 9 (2022) 3631

TM. After calculation, the output results of four different sub-bands shown in the right frame of
Fig. 7(a) are generated.
 The IRSA used in this study is shown in Fig. 7(b), and the first-dimensional Daub-4 filter
based on the AI is shown in the left frame. First, the four input image pixels in the red frame are
calculated. Then the four input pixels in the green border of the next row are read for use in the
calculation. This sequence is based on the red, green, and blue borders until the last row, and
then the four pixels in each row below are read. This rule is applied until the input pixels of the
last line are read. Then, the input pixels in the first line of the next column (as shown by the
black dashed border in the upper left corner of Fig. 7(b)) are processed using the same rule. For
an input image with a size of N × N, the red, green, and blue pixels in the middle part are based
on the output of the first-dimensional AI-based Daub-4 filter in the previous step and stored in
the TM. To calculate the output of the second-dimensional AI-based Daub-4 filter, the storage
size of the TM is reduced from N × N to 10. Next, the four pixels in the red frame are read from
the TM, and the two red pixels in the right frame are generated. These processes can speed up
the final output and synchronize the first and second dimensions of the AI-based Daub-4
calculation. Then, the new pixels calculated from the first dimension are continuously stored in
the TM and overwrite the old pixels. The second-dimensional Daub-4 filter continues to read the
following pixels for use in calculations. This calculation method is based on the red, green, blue,
and yellow borders, which output the red, green, blue, and yellow pixels in the right frame of
Fig. 7(b), respectively.
 As shown in Fig. 8, the storage size of the used TM is 10, which can be used to store the two
output results of the first dimension. The input pixels are stored one at a time in the order
1, 2, 3, … 10. When a signal is stored in pixel 7, the Daub-4 filter of the second dimension uses
pixels 1, 3, 5, and 7 to calculate the output of the two pixels of the second dimension
simultaneously and, at the same time, pixels 8 and 9 are also stored in the TM in sequence.
When the above signals are calculated, pixels 2, 4, 6, and 8 are used to calculate the two output
pixels. At this time, pixels 10 and 11 are stored in the TM, and pixel 11 is stored to substitute the
data in the position of pixel 1. Because of the sampling, four pixels are read simultaneously and,
also, every two pixels are calculated simultaneously. Thus, pixels 5, 7, 9, and 11 are read for use
in the calculation, then pixels 12 and 13 replace pixels 2 and 3 and store them in the TM.
Therefore, the IRSA signal-reading architecture can greatly reduce the use of TM from N2 to 10
bytes in this study.

 Fig. 8. TM architecture.

3632 Sensors and Materials, Vol. 34, No. 9 (2022)

4. Experimental Results

 In this research, we improve the VLSI architecture of the AI-based Daub-4 filter. The
hardware architecture is implemented on the Xilinx FPGA chip and uses the ZedBoard platform.
512 × 512 input images are used for testing, and the hardware test results are compared with
MATLAB simulation results.

4.1 VLSI hardware architecture

 In this research, we use the Xilinx 7 series ZedBoard Zynq-7000 ARM/FPGA SoC
development board to implement the calculations. The AI-based Daub-4 filter is an adder used
in the traditional 2D architecture. The investigated AI-based Daub-4 filter has the advantage of
enhancing the performance as the architecture changes from 2D’s first level (Level 1)
architecture to a multilevel one. As shown in Table 1, the traditional 2D Level 1 architecture
requires 21 adders and the multilevel (Level 4) architecture requires 147 adders. In contrast, the
VLSI architecture requires fewer adders, and the hardware cost is 43% lower for all architectures,
regardless of the level. Therefore, the IRSA improves the efficiency of the investigated
architecture, greatly reducing the amount of computing time and the hardware cost.(9,10,13,15,16)
This algorithm is used to change the reading and memory access architectures and reduce the
amount of used TM. With increasing resolution of the input images, the traditional architecture
has a higher hardware cost. In past studies, the impacts on the output signals caused delays of the
output signals. In contrast, the improved reading architecture in this study only needs 10 adders.
The investigated architecture can also be extended to AI-based Daub-6 filters, as shown
in Table 2.

Table 2
Number of filter adders used in Daub-6 architecture.

Original Daub-6 This work Cost reduction (%)
AI filter 12 5 42
AI block 48 15 31
Level 1 57 24 43
Level 2 288 123 43
Level 3 519 222 43
Level 4 750 321 43
TM (bytes) N2 21

Table 1
Number of filter adders used in Daub-4 architecture.

Original Daub-4 This work Cost reduction (%)
AI filter 6 3 50
AI block 18 6 33
Level 1 21 9 43
Level 2 63 27 43
Level 3 105 45 43
Level 4 147 63 43
TM (bytes) N2 10

Sensors and Materials, Vol. 34, No. 9 (2022) 3633

 Comparing the results obtained from the Daub-4 and Daub-6 architectures in this research
with the results obtained from other studies, we find that the improved architecture has the
advantage of not requiring multipliers and only a small number of adders are needed, and the
IRSA further improves the architecture (Tables 3 and 4). The investigated architecture has
reduced hardware requirements without affecting the delay time of the outputs. For example, by
comparing the results of the investigated Daub-4 architecture in this study with the results in
Refs. (21) and (35), it can be seen that the investigated architecture does not need multipliers and
only two more adders are needed. Moreover, compared with the results in Refs. (10), (15), and
(36), the investigated Daub-4 architecture needs fewer adders.

4.2	 Image	quality	evaluation

 In this section, we demonstrate that the image quality can be maintained when using the
proposed architecture and that the test images of Lena, Goldhill, Boat, and Bridge are improved
by the AI-based Daub-4 filters. The software/hardware simulation environment in this study is a
PC with an Inter Celeron G1840 CPU (4.00 GHz), 16 GB of RAM, Windows 7, and ISE Design
Suite 14.7, with MATLAB R2016a used as the test platform. Figure 9 shows, from left to right,
the original images to the results of 2D third-level analysis. The output images are improved by
the AI-based Daub-4 filter. The improved architecture can also be imported into other
Daubechies filters, such as the Daub-6 filter, to reduce the number of adders, and then the IRSA
can be used to further reduce the use of TM.
 Table 5 shows the peak signal-to-noise ratio (PSNR) values of the images shown in Fig. 9
output by the improved Daub-4 filter. The size of the original images is 512 × 512 pixels, and the
output of each level of analysis is only one-quarter of the size of the previous level to maintain
the image quality: 256 × 256 pixels for Level 1, 128 × 128 pixels for Level 2, and 64 × 64 pixels

Table 3
Comparisons of first-order 2D Daub-4 filter architecture.
Investigated Ours (10) (15) (21) (35) (36)
Multipliers 0 0 0 2 3 0
Adders 6 9 18 4 4 30
TM (bytes) 10 — N2 — — N2/4 + 2N
Latency 4Ta 6Ta 5Ta — — —
CT 3N2/4 — 3N2/4 — — N2/2
Latency represents time from signal input to output, Ta and Tm: numbers of adders and multipliers that have passed,
respectively, CT: time required to calculate image.

Table 4
Comparisons of first-level and 2D Daub-6 filter architecture.
Investigated Ours (10) (15) (17) (21) (37)
Multipliers 0 0 0 0 4 0
Adders 15 18 48 48 6 16
TM (bytes) 21 — N2 N2 — —
Latency 6Ta 5Ta 6Ta 6Ta — —
CT 3N2/4 — 3N2/4 3N2/4 — —

3634 Sensors and Materials, Vol. 34, No. 9 (2022)

Table 5
PSNR values of each ordered image after Daub-4 analysis.
Original Image (dB) Level 1 Level 2 Level 3
Lena 71.11 65.58 66.27
Goldhill 69.72 64.31 63.12
Boat 72.48 70.35 65.81
Bridge 67.49 65.27 62.18

Fig. 9. Test results from original image to third-level analysis. (a) Original input image and results of (b) first-level,
(c) second-level, and (d) third-level analyses.

(a) (b) (c) (d)

for Level 3. These results demonstrate that the investigated algorithm requires less memory to
store the processed images and does not increase the PSNR value.

Sensors and Materials, Vol. 34, No. 9 (2022) 3635

5. Conclusions

 The system investigated in this research successfully used an AI-based 2D Daub-4 filter with
the IRSA. We showed that the investigated IRSA architecture can implement the VLSI
architectures of the AI-based Daub-4 and Daub-6 2D multilevel Daubechies DWT on an FPGA
and that they had higher efficiency than the traditional Daub-4 VLSI architecture. The
investigated system also had more efficient use of the TM in the traditional Daub-4 VLSI
architecture owing to the new filter structure to reduce the amount of signal reading and increase
the calculation speed. Two long-standing problems with the VLSI hardware architecture have
been effectively solved in this study. First, the numbers of adders and multipliers were reduced.
Second, the size of TM was reduced from N2 in traditional architectures to 10 or 21 (in the Daub-
4 and Daub-6 modes, respectively). Therefore, the investigated architecture can be applied to
other Daubechies filters with different basis functions to increase the signal accuracy and speed
and reduce the hardware cost.

Acknowledgments

 This work was supported by the Natural Science Foundation of Fujian Province (2020J01366),
Longyan Science and Technology Project (2019LYF5001) and by Project Nos. MOST 110–2622-
E-390–002 and MOST 110–2221-E-390–020.

References

 1 M. Vetterli and C. Herley: IEEE Trans. Signal Process. 40 (1992) 2207. https://doi.org/10.1109/78.157221
 2 C. H. Hsia, J. M. Guo, and J. S. Chiang: IEEE Trans. Circuits Syst. Video Technol. 19 (2009) 1202. https://doi.

org/10.1109/TCSVT.2009.2020259
 3 M. Rabbani and R. Joshi: Signal Process. Image Commun. 17 (2002) 3. https://doi.org/10.1016/S0923–

5965(01)00024–8
 4 M. B. Amor, F. Kammoun, and N. Masmodi: 2016 Int. Image Process. Applications and Systems (IPAS) (2016)

1–4. https://doi.org/10.1109/IPAS.2016.7880121
 5 S. K. Mishra, L. N. Tripathy, and S. C. Swain: 2017 Int. Conf. Innovative Mechanisms for Industry Applications

(ICIMIA) (2017) 295–301. https://doi.org/10.1109/ICIMIA.2017.7975622
 6 D. P. Ladumor, I. N. Trivedi, R. H. Bhesdadiya, and P. Jangir: 2017 3rd Int. Conf. Advances in Electrical,

Electronics, Information, Communication and Bio-Informatics (AEEICB) (2017) 283–288. https://doi.
org/10.1109/AEEICB.2017.7972430

 7 K. A. Wahid, V. S. Dimitrov, G. A. Jullien, and W. Badawy: 36th Asilomar Conf. Signals, Systems and
Computers (2002) 967–971. https://doi.org/10.1109/ACSSC.2002.1197320

 8 J. P. Andrew, P. O. Ogunbona, and F. J. Paoloni: IEEE Int. Conf. Acoustics, Speech and Signal Processing
(ICASSP ‘94) (1994) V/589-V/592. https://doi.org/10.1109/ICASSP.1994.389443

 9 B. K. Mohanty, A. Mahajan, and P. K. Meher: IEEE Trans. Circuits Syst. II: Express Briefs 59 (2012) 434.
https://doi.org/10.1109/TCSII.2012.2200169

 10 M. A. Islam and K. A. Wahid: IEEE Trans. Circuits Syst. II: Express Briefs 57 (2010) 716. https://doi.
org/10.1109/TCSII.2010.2056111

 11 K. Wahid, S.B. Ko, and D. Teng: 2008 IEEE Int. Joint Conf. Neural Networks (IEEE World Congress on
Computational Intelligence) (2008) 2761–2765. https://doi.org/10.1109/IJCNN.2008.4634186

 12 K. A. Wahid, V. S. Dimitrov, G. A. Jullien, and W. Badawy: Conf. Record of the 36th Asilomar Conf. Signals,
Systems and Computers (2002) 967–971. https://doi.org/10.1109/ACSSC.2002.1197320

 13 H. S. Abdel-Aty-Zohdy, S. Roth, and E. Mebrahtu: IEEE 56th Int. Midwest Symposium on Circuits and
Systems (MWSCAS) (2013) 616–620. https://doi.org/10.1109/MWSCAS.2013.6674724.

 14 T. Ganesan and P. Rajarajeswari: Int. J. Commun. Netw. Distrib. Syst. 28 (2022) 337. https://doi.org/10.1504/
IJCNDS.2022.122170

https://doi.org/10.1109/78.157221
https://doi.org/10.1109/TCSVT.2009.2020259
https://doi.org/10.1109/TCSVT.2009.2020259
https://doi.org/10.1016/S0923
https://doi.org/10.1109/IPAS.2016.7880121
https://doi.org/10.1109/ICIMIA.2017.7975622
https://doi.org/10.1109/AEEICB.2017.7972430
https://doi.org/10.1109/AEEICB.2017.7972430
https://doi.org/10.1109/ACSSC.2002.1197320
https://doi.org/10.1109/ICASSP.1994.389443
https://doi.org/10.1109/TCSII.2012.2200169
https://doi.org/10.1109/TCSII.2010.2056111
https://doi.org/10.1109/TCSII.2010.2056111
https://doi.org/10.1109/IJCNN.2008.4634186
https://doi.org/10.1109/ACSSC.2002.1197320
https://doi.org/10.1109/MWSCAS.2013.6674724
https://doi.org/10.1504/IJCNDS.2022.122170
https://doi.org/10.1504/IJCNDS.2022.122170

3636 Sensors and Materials, Vol. 34, No. 9 (2022)

 15 S. K. Madishetty, A. Madanayake, and R. J. Cintra: IEEE Trans. Circuits Syst. I Regul. Pap. 60 (2013) 1455.
https://doi.org/10.1109/TCSI.2012.2221171

 16 S. K. Madishetty, A. Madanayake, R. J. Cintra, and V. S. Dimitrov: IEEE Trans. Circuits Syst. I Regul. Pap. 61
(2014) 1984. https://doi.org/10.1109/TCSI.2014.2298283

 17 S. Mohammadi and A. Javadi: 2010 Int. Conf. Signal Acquisition and Processing (2010) 145–150. https://doi.
org/10.1109/ICSAP.2010.47

 18 A. Madanayake, R. J. Cintra, and D. Onen: IEEE Trans. Circuits Syst. Video Technol. 22 (2012) 915. https://doi.
org/10.1109/TCSVT.2011.2181232

 19 P. Balakrishnan, M. M. Hasan, and K. A. Wahid: Can. J. Electr. Comput. Eng. 37 (2014) 127–134. https://doi.
org/10.1109/CJECE.2014.2316227

 20 S. C. Lai, Y. P. Yeh, and S. F. Lei: IEEE Trans. Circuits and System. II: Analog and Digital Signal Process. 59
(2012) 511. https://doi.org/10.1109/TCSII.2012.2204115

 21 N. Dwork, D. O’Connor, C. A. Baron, E. M. I. Johnson, A. B. Kerr, J. M. Pauly, and P. E. Z. Larson: Signal
Image Video Process. 15 (2021) 1407. https://doi.org/10.1007/s11760-021-01872-y

 22 A. J. Casson: Sensors 15 (2015) 31914. https://doi.org/10.3390/s151229897
 23 K. A. Wahid, M. A. Islam, and S.-B. Ko: IEEE Int. Symp. Circuits and Systems (2011) 2157–2160. https://doi.

org/10.1109/ISCAS.2011.5938026
 24 M. Oltean and M. Nafornita: IEEE Int. Conf. Communications (2010) 343–346. https://doi.org/10.1109/

ICCOMM.2010.5509085
 25 D. N. Vizireanu and R. O. Preda: IEEE Int. Conf. Telecommunication in Modern Satellite, Cable and

Broadcasting Services (2005) 518–521. https://doi.org/10.1109/TELSKS.2005.1572166
 26 R. Baghaie and V. Dimitrov: Comput. Math. Appl. 41 (2001) 1403. https://doi.org/10.1016/S0898–

1221(01)00105–5
 27 C. Diou, L. Torres, and M. Robert: IEEE Int. Conf. Emerging Technologies and Factory Automation (2001)

179–186. https://doi.org/10.1109/ETFA.2001.997684
 28 K. Andra, C. Chakrabarti, and T. Acharya: IEEE Trans. Signal Process. 50 (2002) 966. https://doi.

org/10.1109/78.992147
 29 P. Y. Chen: IEEE Trans. Computers 53 (2004) 386. https://doi.org/10.1109/TC.2004.1268396
 30 C. T. Huang, P. C. Tseng, and L. G. Chen: IEEE Trans. Signal Process. 53 (2005) 1575. https://doi.org/10.1109/

TSP.2005.843704.
 31 M. Vishwanath, R. M. Owens, M. J. Irwin, and J. Irwin: IEEE Trans. Circuits Syst. II: Analog Digital Signal

Process. 42 (1995) 305–316. https://doi.org/10.1109/82.386170
 32 C. H. Hsia, J. S. Chiang, and J. M. Guo: IEEE Trans. Circuits Syst. Video Technol. 23 (2013) 671. https://doi.

org/10.1109/TCSVT.2012.2211953
 33 C. H. Hsia, J. M. Guo, and J. S. Chiang: IEEE Trans. Circuits Syst. Video Technol. 19 (2009) 1202. https://doi.

org/10.1109/TCSVT.2009.2020259
 34 C. H. Hsia: J. Internet Technol. 15 (2014) 1083. https://doi.org/10.6138/JIT.2014.15.7.01
 35 P. Balakrishnan and K. Wahid: IEEE Canadian Conf. Electrical and Computer Engineering (2013) 1–4. https://

doi.org/10.1109/CCECE.2013.6567727
 36 B. Das and S. Banerjee: IEEE Proc. Circuits, Devices and Systems (2005) 17–24. https://doi.org/10.1049/ip-

cds:20040817
 37 M. M. Hasan and K. A. Wahid: IEEE Trans. Circuits Syst. II Express Briefs 64 (2017) 585. https://doi.

org/10.1109/TCSII.2016.2584091

https://doi.org/10.1109/TCSI.2012.2221171
https://doi.org/10.1109/TCSI.2014.2298283
https://doi.org/10.1109/ICSAP.2010.47
https://doi.org/10.1109/ICSAP.2010.47
https://doi.org/10.1109/TCSVT.2011.2181232
https://doi.org/10.1109/TCSVT.2011.2181232
https://doi.org/10.1109/CJECE.2014.2316227
https://doi.org/10.1109/CJECE.2014.2316227
https://doi.org/10.1109/TCSII.2012.2204115
https://doi.org/10.1007/s11760-021-01872-y
https://doi.org/10.3390/s151229897
https://doi.org/10.1109/ISCAS.2011.5938026
https://doi.org/10.1109/ISCAS.2011.5938026
https://doi.org/10.1109/ICCOMM.2010.5509085
https://doi.org/10.1109/ICCOMM.2010.5509085
https://doi.org/10.1109/TELSKS.2005.1572166
https://doi.org/10.1016/S0898–1221(01)00105–5
https://doi.org/10.1109/ETFA.2001.997684
https://doi.org/10.1109/78.992147
https://doi.org/10.1109/78.992147
https://doi.org/10.1109/TC.2004.1268396
https://doi.org/10.1109/TSP.2005.843704
https://doi.org/10.1109/TSP.2005.843704
https://doi.org/10.1109/82.386170
https://doi.org/10.1109/TCSVT.2012.2211953
https://doi.org/10.1109/TCSVT.2012.2211953
https://doi.org/10.1109/TCSVT.2009.2020259
https://doi.org/10.1109/TCSVT.2009.2020259
https://doi.org/10.6138/JIT.2014.15.7.01
https://doi.org/10.1109/CCECE.2013.6567727
https://doi.org/10.1109/CCECE.2013.6567727
https://doi.org/10.1049/ip-cds:20040817
https://doi.org/10.1049/ip-cds:20040817
https://doi.org/10.1109/TCSII.2016.2584091
https://doi.org/10.1109/TCSII.2016.2584091

