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	 The areas of application of mobile robots are becoming increasingly extensive. Most mobile 
robots use visual images to obtain information about the surrounding environment, including 
information about the floor area that can be traversed or obstacles to be avoided. In this study, 
we propose a multiple-classifier method based on an improved fuzzy integral (IFI) for floor area 
detection using charge-coupled device sensors. The multiple classifiers include deep learning 
networks (DLNs) and an area contour detection (ACD) algorithm. The IFI in the proposed 
method is different from the traditional fuzzy integral in that its fuzzy density value is optimized 
using the artificial bee colony algorithm. The proposed method takes the outputs of several 
classifiers and the ACD algorithm as the input. The IFI is used to evaluate each classifier to 
leverage its advantages for the proposed method. Finally, the classification results are calculated 
to achieve accurate floor area detection. To verify the performance of the proposed method, we 
used the public MIT scene dataset and images of various indoor environments as the study 
dataset, with 200, 48, and 48 images used as training data, verification data, and test data, 
respectively. The experimental results revealed that the DLN–ACD–IFI combination achieved 
an average floor area detection accuracy of 97.8%, thus improving the overall recognition rate.

1.	 Introduction

	 In recent years, mobile robots have been widely used in different fields. In some mobile robot 
applications, visual images from charge-coupled device (CCD) sensors have been used to obtain 
information about the surrounding environment, thus enabling the mobile robot to avoid 
obstacles and move autonomously. Accordingly, image segmentation is a key technology that 
enables a mobile robot system to automatically segment object areas from an image and identify 
objects.
	 Numerous traditional image-sensing-based segmentation techniques have been proposed. For 
example, Chun et al.(1) proposed a novel method for calculating depth information from a single 
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indoor image through nonlinear diffusion and image segmentation. In this method, nonlinear 
diffusion is used to detect floor candidates, and image segmentation is then used to detect the 
floor area and calculate the depth information. However, this method cannot be applied to 
complex environments. Kumar et al.(2) used superpixels to segment some smaller obstacles. 
Because obstacles with a similar appearance to the floor area cannot be accurately distinguished, 
they developed a line segment detection method for detecting obstacles on the floor. However, 
this method cannot accurately segment the floor area. Aggarwal et al.(3) proposed a framework 
for estimating floor regions in cluttered indoor environments and used a generic classifier that 
was trained on appearance cues and floor density estimates using various indoor images. 
Moreover, Boykov and Kolmogorov(4) experimentally compared the efficiency of mincut/
maxflow algorithms for applications in image restoration and segmentation.
	 Although the aforementioned traditional image segmentation methods can detect the floor 
area, they can perform only rough segmentation and cannot accurately segment objects. 
Therefore, many researchers have applied deep learning to image segmentation. A convolutional 
neural network (CNN) can effectively implement image classification. However, because a CNN 
has a fully connected layer, the original 2D matrix becomes 1D, resulting in the loss of spatial 
information.
	 To obtain a segmentation map as the output, Long et al.(5) proposed a fully convolutional 
network (FCN) for generalizing an end-to-end convolutional network for image segmentation. 
Badrinarayanan et al.(6) proposed SegNet, which transfers the maximum pooling index to the 
decoder to improve the recognition rate. The Google team(7) proposed DeepLabv2, which uses 
atrous convolution to increase the receptive field without increasing the number of parameters 
and uses fully connected conditional random fields (CRFs) to optimize the prediction results. 
However, atrous convolution has a high computational cost and requires substantial memory. Lin 
et al.(8) proposed RefineNet and the corresponding encoder–decoder structure.
	 Optimization methods have been proposed to improve the performance of deep learning 
networks (DLNs). The most common optimization method is minibatch stochastic gradient 
descent (SGD), which randomly selects a certain number of training samples for training each 
time. This method usually learns efficiently; however, it relies excessively on the learning rate 
setting and requires a long training time. Therefore, some researchers have proposed different 
optimization methods(9–13) to address these drawbacks; of these methods, Adam(14) is the most 
widely used.
	 In this study, we propose a multiple-classifier method based on an improved fuzzy integral 
(IFI) for floor area detection using CCD sensors. The multiple classifiers included for 
combination in the proposed method are DLNs and an area contour detection (ACD) algorithm. 
The proposed method uses multiple trained DLNs and ACD as inputs to the fuzzy integral (FI) 
and computes classification results using Sugeno or Choquet output rules. Moreover, the multiple 
trained DLNs and ACD are combined with the IFI, and the corresponding fuzzy density value is 
optimized using the artificial bee colony (ABC) algorithm, thus overcoming the drawback of 
majority decision rules in traditional voting methods. The IFI evaluates each classifier to 
leverage its advantages for the proposed method. Finally, for the input data, the classification 
results are derived to achieve a more accurate floor area detection process.
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	 The remainder of this paper is organized as follows. In Sect. 2, we describe a previously 
proposed FCN and the DeepLabv2 network. In Sect. 3, the proposed multiple-classifier method 
based on the IFI is presented. In Sect. 4, we present the experimental results obtained using the 
proposed method. Finally, in Sect. 5, conclusions and future work are given.

2.	 Image Segmentation Methods

	 In this section, we present three image segmentation methods, namely, a previously proposed 
FCN, DeepLabv2, and the ACD algorithm, that are used in the proposed method. These three 
methods are detailed as follows.

2.1	 FCN algorithm

	 In this subsection, we introduce the FCN algorithm proposed by Long et al.(5) for performing 
pixel-level image classification and end-to-end pixel-to-pixel image segmentation. This FCN is 
trained through a supervised learning approach. An FCN differs from a general CNN in that an 
FCN is built on a “full convolution” network. An FCN can take an input image of any size from 
a CCD sensor and use a deconvolution layer to upsample the feature map of the last convolutional 
layer. Subsequently, the network output is restored to the same size as the input image. Each 
pixel in the image is predicted. Finally, pixel classification is performed on the upsampled 
feature map.
	 This FCN mainly comprises convolutional, pooling, upsampling, activation function, and 
skip layers. The operating process of each layer is described below.

2.1.1	 Convolutional layers

	 Convolutional layers comprise several convolution kernels and are used to extract input 
image features. Multiple convolutional layers can extract more complex features. Each 
convolutional layer uses a convolution kernel mask of different weight combinations to perform 
a convolution operation (i.e., an inner product operation) with a sliding window and generate a 
feature map. Figure 1 displays a schematic of the convolution operation
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where YIJ is the output matrix, c1 represents the width and height of the convolution kernel, Xij 
represents the input matrix, and Kij represents the weight in the convolution kernel. The   
classifier must learn Kij during the training process.

2.1.2	 Pooling layer

	 The pooling layer reduces the dimension and the subsequent large number of parameter 
operations without losing crucial feature information. The pooling process involves the use of a 
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sliding window to perform masking operations on the input image. However, a nonoverlapping 
method is adopted in the masking process, which means that each pixel of the input matrix only 
undergoes one pooling operation. The most commonly used nonlinear pooling functions are 
max pooling and average pooling (Fig. 2). The proposed method uses max pooling, and the 
maximum value in the mask is used as the output; that is, the most prominent features are 
retained.

	 ( )1 1

2 2

*

*
max p p

j i
x y

Y X= 	 (2)

Here, Yj is the output, Xi is the input, and p1 is the size of the pooling mask. However, because the 
masks do not overlap with each other, the output dimension of the pooling layer is 1/(p1 × p1)
times the input dimension.

2.1.3	 Upsampling layer

	 The upsampling layer is a fully connected layer that replaces the convolutional network. It is 
used to restore the pooled output to a segmentation map of the input image size. This process is 
called deconvolution or transposed convolution. Similar to convolution, deconvolution involves 
multiplication and addition operations; it is schematically illustrated in Fig. 3.

2.1.4	 Activation function layer

	 The activation function layer enables a network with only a linear combination to employ 
nonlinear expressions for solving more complex nonlinear problems. Common activation 
functions include sigmoid, tanh, and rectified linear unit (ReLU). Previously, the sigmoid 
function was mostly used as the activation function; however, the gradient disappears in the 
process of backward transfer learning. Therefore, ReLU is currently used as the activation 
function to solve this problem and reduce the degree of overfitting. Figure 4 presents the ReLU 
activation function.

	 ( ) ( )max 0,ReLU x x= 	 (3)

Fig. 1.	 (Color online) Schematic of convolution operation.
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2.1.5	 Skip layer

	 The results obtained after full convolution can be upsampled to obtain dense prediction 
results. However, segmentation results are relatively rough. Therefore, the skip layer in the FCN 
proposed by Long et al.(5) is included, which has the primary function of optimizing the results. 
The results of different pooling layers are upsampled to optimize the output; that is, the sum of 
the outputs of the last few layers and the final output is calculated.

2.2	 DeepLabv2 network

	 Here, DeepLabv2(7) proposed by the Google team in 2017 is introduced. It uses atrous 
convolution as a powerful tool for dense prediction tasks. Furthermore, it applies atrous spatial 
pyramid pooling (ASPP), in which multiscale information is used to obtain more robust 
segmentation results. Finally, the segmentation boundary results are improved by combining 
deep CNNs (DCNNs) and dense CRFs, which afford advantages including high speed, high 
accuracy, and easy implementation. Figure 5 shows a schematic of DeepLabv2.
	 DeepLabv2 involves the following steps.
Step 1:	� Use atrous convolution in the DCNN in the ASPP module to obtain rough prediction 

results for the input image.
Step 2:	� Enlarge the image to its original size through bilinear interpolation.
Step 3: Refine the prediction results through the fully connected CRF.
	 The components of DeepLabv2 are described as follows.

Fig. 3.	 (Color online) Schematic diagram of deconvolution.

Fig. 2.	 (Color online) Schematic of pooling operation.
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2.2.1	 Atrous convolution

	 Atrous convolution is used for dense feature extraction and for enlarging the receptive field 
without increasing the number of parameters or computations. The feature map of any layer can 
be calculated at any feature response resolution. Figure 6 shows a schematic of atrous 
convolution. This convolution process can be expressed as
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[ ] [ ] [ ]
K

k
y i x i r k k

=

= + ⋅∑ ω ,	 (4)

where y[i] is the hole convolution output, x[i] represents the 1D input signal, r is the atrous rate 
(the stride of the sampled input signal), and ω[k] represents the filter of length k.

2.2.2	 ASPP module

	 The ASPP module represents multiscale images that can be used to improve the DCNN 
accuracy in segmenting objects of different sizes. DeepLabv2 uses multiple sampling rates in 
parallel to extract features. The features are then combined in a configuration similar to a spatial 
pyramidal structure. Figure 7 shows a schematic of the ASPP module.

Fig. 5.	 Schematic of DeepLabv2.

Fig. 4.	 (Color online) ReLU activation function.
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2.2.3	 Fully connected CRF

	 Owing to the inaccuracy of classification and boundary cutting in the DCNN, a fully 
connected CRF(7) is used for structure prediction to improve the boundary accuracy. The fully 
connected CRF finds the relationship between image pixels and assigns labels by considering 
the probability of the pixels. After several iterations to refine the result, a more accurate 
boundary can be obtained.

2.3	 ACD algorithm

	 Because of the weak representation ability of DLNs for floor details, the proposed method 
applies the ACD algorithm(15) to improve its representation of floor details. The ACD algorithm 

Fig. 6.	 (Color online) Schematic of atrous convolution: (a) sparse feature extraction and (b) dense feature 
extraction.

Fig. 7.	 (Color online) Schematic of ASPP module.
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identifies the rough areas of a floor through two methods: object edge detection in an image and 
line segment intersection (Fig. 8). Edge detection is executed to detect the floor and objects by 
extracting the edge. To reduce the number of calculations, the image is first processed using the 
simple linear iterative clustering (SLIC) algorithm—a superpixel segmentation algorithm—to 
group all adjacent and similar pixels. The pixels are then processed in blocks. Line segment 
intersection is executed, and the areas created after the intersection are calculated. Finally, the 
floor area is identified through object labeling.

2.3.1	 SLIC algorithm

	 The SLIC algorithm uses local clustering. Specifically, it calculates the similarity between 
each pixel in an image and its adjacent pixels for clustering. Compared with processing pixels 
individually, processing grouped superpixels is conducive to improving operational speed and 
affords the advantages of easy implementation and high efficiency.

2.3.2	 Canny edge detector

	 The Canny edge detector(16) both reduces noise and provides precise edge locations. After the 
input image is processed by the SLIC algorithm, the average value of the RGB components in the 
segmented superpixels is calculated and used as the input. Therefore, the detected edge is closer 
to the boundary of the object and removes some unnecessary noise.

2.3.3	 Line segment detector

	 Gioi et al.(17,l8) proposed the line segment detector (LSD) for extracting line segment features 
in an image. The LSD can quickly detect line segments in an image; subsequently, an error 

Fig. 8.	 Schematic of ACD algorithm.
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control method is used to enhance the detection accuracy. In the LSD, the input is a grayscale 
image, and the outputs are the coordinates and attributes of the detected line segment. Li and 
Birchfield(19) proposed an improved LSD that can operate on longer diagonal lines. In the 
improved LSD, lines are divided into three categories, after which the intersections of the 
diagonal lines with all other line segments are calculated. An adaptive threshold is set to identify 
the diagonal line with the most intersections and extend it. In this study, the adaptive threshold 
was set to 20% of the maximum number of intersections.

2.3.4	 Connected-component labeling

	 After the edge and line segment features of the object are detected by the Canny edge 
detector and the LSD, connected-component labeling (CCL)(20) is used to label the object. 
Therefore, an appropriate area is selected as the rough floor area.

3.	 Proposed Method

	 Each DLN has advantages and disadvantages. To leverage the advantages of DLNs, in this 
study, we propose a multiple-classifier method based on the IFI for detecting floor areas. The 
multiple classifiers include DLNs and the ACD algorithm. The method involves three 
combination schemes: combining the same DLN architectures, combining different DLN 
architectures, and combining different DLN architectures and the ACD algorithm.
	 The traditional FI can combine multiple classifiers in the same task to improve 
performance.(21,22) Consider, for example, traditional feature extraction methods. In such 
methods, several features are extracted from the same image and then used as the input in 
trained classifiers; the derived output is used as the input of the FI. The FI evaluates the output of 
each classifier through a fuzzy measure, and the final output is then calculated.
	 In this study, to accurately detect the location of the floor area in an image, we propose a 
method in which the IFI is combined with several DLNs and the ACD algorithm. First, different 
DLNs, each with its own performance capability or advantage, are trained using the same set of 
training data. Subsequently, each DLN with good representation ability is combined with the IFI 
to obtain favorable accuracy. Figure 9 shows a flowchart of the proposed method.
	 Suppose X ={xi}i=1:n represents a set of n classifiers. Accordingly, g(xi) is a fuzzy measure 
that represents the confidence level of each output of the classifier and can be used to evaluate 
the credibility of a subset. If the maximum value of the output is 1, then the output of this set can 
be completely trusted. If the minimum value of the output is 0, then the output of this set has no 
reference value. The FI is mainly based on a fuzzy measure, and the final output is determined 
by various rules. The fuzzy measure must meet the following three conditions.
Condition 1: g(X) = 1

When the outputs of all classifiers are consistent, the results must be trusted.
Condition 2: g(∅) = 0

The results are meaningless when the outputs of all classifiers are not consistent.
Condition 3: The fuzzy measure must be an increasing monotonic function,
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	 ( ) ( )If , then 0 1A B X  g A g B⊂ ⊂ ≤ ≤ ≤ .	 (5)

	 Before calculating the fuzzy measure, the fuzzy density must be determined. When set g 
contains only one element, the fuzzy measure is called the fuzzy density; Fig. 10 displays the 
relationship between the two. However, in the traditional FI, the fuzzy density is determined by 
experts. Specifically, the fuzzy density is intuitively the confidence level of each output of the 
classifier. Therefore, some researchers used the accuracy of the classifier for nontraining data as 
the parameter for determining the fuzzy density.(23–25) Nevertheless, this determination 
approach is usually not optimal.
	 Accordingly, we apply the IFI to determine the fuzzy density through an optimization 
algorithm. The optimization algorithm is based on the ABC algorithm proposed by Karaboga 
and Basturk.(26) The ABC algorithm simulates the foraging behavior of bee colonies in nature 
and finds the best solution after several iterations of evolution. Figure 11 shows a flowchart of 
the ABC algorithm.
	 The fuzzy density parameter in the IFI is n × k floating-point numbers in the range [0, 1], 
where n is the number of classifiers and k is the number of classes in the classification problem. 
Therefore, the dimension of the solution space is n × k and the range is [0, 1]. Each bee in the 
ABC algorithm represents a set of fuzzy density solutions; Fig. 12 shows its code. The algorithm 
calculates the fitness value, which represents the quality of the solution. Specifically, the 
obtained fitness value represents the degree of excellence of the bee.
	 The overall evolution steps of the ABC algorithm are as follows.
Step 1: Initialization
	 The initial parameters are set, including the number of food sources (SN), maximum number 
of iterations, and number of continuous unimproved food sources (“limit”). The locations of the 
food source are generated by random numbers in the solution space:

Fig. 9.	 Flowchart of proposed method.
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	 [ ]( )0,1j j jj
i min max minx x rand x x= + − ,	 (6)

where j
ix  is the initial value of the jth dimension of the ith employed bee, j

minx  is the minimum 
value of the jth dimension of the solution space, and  j

maxx is the maximum value of the jth 
dimension of the solution space.

Fig. 11.	 Flowchart of ABC algorithm.

Fig. 10.	 Relationship between fuzzy measure and fuzzy density.
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Fig. 12.	 Coding diagram of fuzzy density solution.

Step 2: Fitness function calculation
	 After determining the location information of the employed bees, each onlooker uses the 
roulette method to determine which food source to search for and calculate the benefit of the 
food source. The probability Pi that the ith food source is selected is given by

	
1

  i
i SN

nn

fitP
fit

=

=
∑

,	 (7)

where fiti is the profitability of the ith food source and SN is the total number of food sources.
Step 3: Swarm location update
	 The number of employed bees and onlookers in the algorithm is usually equal to half the 
population. The initial position of each employed bee is moved to the new food source position 
in accordance with the following formula:

	 [ ]( )1,1j j j
i ij i kv x rand x x= + − − ,	 (8)

where  j
iv  is the new position of the ith employed bee after the jth dimension moves, j

ix  is the 
position of the ith employed bee before the jth dimension moves, and j

kx  is the position of the jth 
dimension of another employed bee k that is randomly selected.
Step 4: Check “limit” value
	 To present the algorithm from falling into a regional optimal solution, if the profitability of 
any food source has not been improved after a set number of searches (“limit” value), the food 
source is discarded, the employed bee becomes a scout bee, and the abandoned food source is 
replaced by another new food source in accordance with Eq. (6).
Step 5: Loop until termination conditions are met
	 An assessment is conducted to determine whether the termination conditions are met or the 
maximum number of iterations is reached. If the conditions are met, the algorithm ends and the 
optimal solution is output. Otherwise, the algorithm returns to Step 2 to continue its execution.
	 After the fuzzy density is determined, the fuzzy measure is calculated as follows:

	 ( ) ( ) ( ) ( ) ( ), ,g XA B g A g B g A g B A B∪ = + + ⊂λ ,	 (9)
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where λ is calculated as

	 λ + 1 = ( ) 1  1n i
i g
=

+∏ λ .	 (10)

	 The value of λ in the IFI is equal to the output dimension, which indicates that each output 
category can calculate one λ, and ( )1,∈ − ∞λ  with three characteristics: (1) if  1 1n i

i g
=

=∑ , then 
λ = 0; (2) if   1 1 n i

i g
=

<∑ , then λ > 0; (3) if  
  1 1n i

i g
=

>∑ , then −1 ≤ λ < 0.
	 In the proposed method, two output rules, the Sugeno FI and Choquet FI, are selected. The 
two FIs are calculated simultaneously, and the higher value is regarded as the final output of the 
FI. The IFI outputs of the Sugeno and Choquet FIs are described as follows.
(1) Sugeno FI:

	 ( ) ( )( ) 1 
N

s i i iY h x g A== ∨ ∧π .	 (11)

(2) Choquet FI:

	 ( ) ( ) ( )( )  1  1
n

c i i iiY h x g A g A −=
= −∑ π ,	 (12)

where πi denotes the classifier with the ith highest output value.

4.	 Experimental Results

	 To verify the performance of the proposed method, we used the public MIT scene dataset and 
images of various indoor environments as the study dataset. In the experiment, this dataset was 
divided into three subsets for floor image segmentation: training data, verification data, and test 
data. Subsequently, the performances of the various image segmentation methods were 
compared. Evaluation indicators were used to verify that the proposed IFI method can combine 
the advantages of various classifiers for image segmentation to improve the recognition rate.
	 To objectively evaluate the performance of each classifier in the proposed method, we used a 
confusion matrix—a commonly used tool for measuring classification performance—as a 
quantitative indicator of its performance. This matrix includes the following evaluation indices: 
accuracy, G-Mean, precision, recall, and F1-score. In the matrix, TP means that the classifier 
accurately predicted an actual positive value to be positive, TN means that it accurately predicted 
an actual negative value to be negative, FP means that it inaccurately predicted an actual 
negative value to be positive, and FN means that it inaccurately predicted an actual positive 
value to be negative. Each evaluation index is described below.

Accuracy

	    TN TPAccuracy
TN FP FN TP

+
=

+ + +
	 (13)
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G-Mean

	 -    TP TNG Mean
TP FN TN FP

= ×
+ +

	 (14)

Precision (P)
	  TPP

TP FP
=

+
	 (15)

Recall (R)

	     TPR
TP FN

=
+

	 (16)

FI-score

	
1 2     1 1

P RFI
P R

P R

× ×
= =

++
	 (17)

	 A total of 200, 48, and 48 images were used as training data, verification data, and test data, 
respectively. The following parameters were set during the t raining process: 
number of iterations = 100000, limit = 10, and SN = 100. Table 1 presents the performances of 
the proposed method involving various combinations and the performances of the other 
algorithms (i.e., FCN and DeepLabv2). The experimental results revealed that in the proposed 
method, the FCN–DeepLabv2–ACD–IFI combination provided an accuracy, G-Mean, precision, 
recall, and F1-score of 97.83, 96.98, 95.86, 95.65, and 95.75%, respectively, outperforming the 
FCN, FCN–FI, DeepLabv2, and DeepLabv2–FI algorithms.
	 Figure 13 presents ground-truth data with the floor area detection results obtained using the 
proposed method and the IFI, DeepLabv2, and FCN algorithms. As illustrated in Figs. 13(c) and 

Table 1
Performance results for different methods.
Methods Accuracy (%) G-Mean (%) Precision (%) Recall (%) F1-score (%)
FCN 97.38 96.26 95.40 95.17 95.18
DeepLabv2 97.13 95.80 95.82 93.12 94.45
FCN (SGD + Adagrad + 
Adam) + FI 97.58 96.67 96.49 94.61 95.54

FCN (SGD + Adagrad + 
Adam) + IFI 97.74 96.97 95.96 95.40 95.68

DeepLabv2 (SGD + Adagrad 
+ Adam) + FI 96.44 93.73 97.67 88.51 92.87

DeepLabv2 (SGD + Adagrad 
+ Adam) + IFI 97.37 96.22 95.98 93.90 94.92

FCN + DeepLabv2+ ACD + 
FI 97.48 96.00 96.22 94.04 95.08

FCN + DeepLabv2+ ACD + 
IFI 97.83 96.98 95.86 95.65 95.75
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(b)

(c)

(d)

(e)

(f)

(g)

(a)

Fig. 13.	 (Color online) Floor area detection results for different methods: (a) original images, (b) ground-truth 
images, (c) FCN detection results, (d) DeepLabv2 detection results, (e) FCN (SGD + Adagrad + Adam) – IFI 
detection results, (f) DeepLabv2 (SGD + Adagrad + Adam) – IFI detection results, and (g) (FCN + DeepLabv2 + 
ACD) – IFI detection results.
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13(d), both the FCN and DeepLabv2 algorithms could detect the floor area. However, they could 
not successfully detect the finer parts of the floor. For example, smooth objects were misjudged 
as the floor, and the edge of the floor area was uneven.
	 Figure 13(g) illustrates the results obtained after the ACD algorithm was used to smooth the 
edge of the detected floor area. The inclusion of the IFI in the proposed method resulted in more 
accurate floor area detection results, as depicted in Figs. 13(e)–13(g).

5.	 Conclusions

	 We proposed a multiple-classifier method based on the IFI for detecting floor areas. The IFI 
in the proposed method is different from the traditional FI in that its fuzzy density value is 
optimized using the ABC algorithm. The proposed method takes the outputs of several 
classifiers and the ACD algorithm as the input. The IFI is used to evaluate each classifier and 
extract its advantages. The FCN–DeepLabv2–ACD–IFI combination in the proposed method 
achieved an accuracy, G-Mean, precision, recall, and F1-score of 97.83%, 96.98%, 95.86%, 
95.65%, and 95.75%, respectively. The experimental results indicate that the combination in the 
proposed method can achieve an average floor area detection accuracy of 97.8%, thus improving 
the overall recognition rate.
	 In the future, we will explore how to automatically screen out classifiers with smaller or 
similar contributions during the evolution process. Thus, the best classifier combination can be 
automatically determined.
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