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 Autonomous guided vehicles (AGVs) with a robot operation system (ROS)-based platform 
have been widely used in automation-assisted manufacturing. AGV robots in smart 
manufacturing are mainly used to handle materials. Such AGV robots with an ROS are generally 
capable of simultaneous localization and mapping (SLAM) and can therefore perform 
autonomous navigation (the well-known ROS-based SLAM navigation). From the viewpoint of 
“smart” manufacturing, which is expected to have richer artificial intelligence and human–robot 
interaction (HRI), an AGV robot with only ROS-based SLAM autonomous navigation is 
extremely restricted in functions and human–robot interactions. In this work, to increase HRIs 
and the flexibility of usage of AGVs with only ROS-based SLAM autonomous navigation, a 
hand-gesture-control-based navigation approach using a wearable armband with sensor data 
from both surface electromyography (SEMG) and an inertial measurement unit (IMU) is 
presented. The developed hand-gesture-control-based navigation with artificial neural network 
(ANN) hand gesture command recognition can be incorporated into a typical AGV operation 
with SLAM autonomous navigation. The hand-gesture-control-based navigation for AGVs 
proposed in this study mainly consists of two calculation phases: the detection of the significant 
hand gesture for the corresponding gesture operation command by the analysis of eight-axis 
SEMG data, and the recognition of hand gesture commands from the operator using an ANN 
with nine-axis IMU data. To appropriately combine the detection and recognition of hand 
gestures, two strategies were developed for the navigation control of an AGV in a certain 
continuous time period: ANN recognition by the IMU in a fixed decision window with an 
SEMG system wake-up, and ANN recognition by the IMU in a variable decision window with 
both a system wake-up and end. A series of online test experiments on AGV navigation by hand 
gesture control demonstrated that the presented approach has a competitive performance, 
particularly for short-path navigation.
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1. Introduction

 Recently, research on sensor devices in micro-electromechanical systems (also known as 
micro-systems) has turned towards the development of compound sensor devices. Unlike a 
single-sensor device, a compound sensor device can have numerous types of sensors. A 
compound sensor device such as a wearable armband sensing device with two different 
categorizations of sensors for surface electromyography (SEMG) and inertial measurement unit 
(IMU), the Myo armband made by the Thalmic Labs,(1) can be used to construct more advanced 
artificial intelligence (AI) application systems with smart human–machine interactions (HMIs) 
such as hand gesture recognition
 Meanwhile, the rapid development of micro-system sensor techniques has considerably 
increased the intelligence of automation equipment. With the auxiliary use of an advanced 
image sensor, such as light radar (also known as LiDAR), the functionalities and uses of the 
automation equipment of an autonomous guided vehicle (AGV) can be further extended. 
Moreover, an AGV with a LiDAR sensor can perform the commonly used function of 
simultaneous localization and mapping (SLAM).(2) AGVs with SLAM navigation are widely 
used in real-life applications, for example, sweeping robots (cleaning robots) in homes(3) and 
transport vehicles in product line manufacturing.(4–6) Nowadays, with the popularity of robot 
operation system (ROSs) that can support multiple functionalities (including SLAM), AGVs 
with ROS-based SLAM navigation have attracted considerable interest and are being widely 
adopted in smart factories.(7–9) However, from the viewpoint of autonomous mobile robot 
(AMR) designs with high flexibility and factory security, AGVs with ROS-based SLAM 
navigation require further improvement. Such AGVs with ROS-based SLAM navigation may be 
dangerous in unexpected situations and place serious restrictions on task plans without high 
manufacturing flexibility. To tackle this issue, in this work, we significantly increased the 
smartness of human–robot interactions on AGVs with ROS-based SLAM navigation by 
developing and incorporating hand-gesture-control-based AGV navigation using the Myo 
armband with SEMG and IMU gesture-sensing characteristics (see Fig. 1). The AGV system 
adopted in this study is the well-known TurtleBot wheeled-vehicle robot with the version 1 ROS, 
where an additional design is appropriately used to carry the material.(10) The ROS-based SLAM 
autonomous navigation on such a wheeled-vehicle robot that can be operated concurrently with 
the presented hand-gesture-command-based navigation is finely regulated by the well-known 
“gmapping” SLAM approach, which is categorized into the 2D-SLAM type.(11)

 Studies on the use of wearable armbands or bracelets with specific sensors to acquire 
gestures for the development of smart applications have been frequently reported, with studies 
focusing on healthcare,(12,13) rehabilitation,(14) entertainment, and virtual reality (VR).(15) Such 
wearable sensor devices have rarely been used in studies to establish a hand-gesture-based 
human–robot interaction scheme for a target robot device for smart manufacturing. In addition, 
most studies related to AGV techniques have been aimed at enhancing the typical SLAM 
approach (including mapping, AGV localization, and AGV obstacle avoidance improvements) 
and to implement tasks related to AGV SLAM navigation integrated in a specific 
environment.(16,17) There have been few reports on the development of a hand-gesture-based 
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command scheme using a wearable armband sensing device for implementation in AGV SLAM 
navigation. In our previous study,(12) the Myo armband was used to develop a service robot 
system with specialized hand-gesture-based human–computer interfaces for people with 
mobility problems. In this study, only the Myo armband software development kit (SDK) was 
used to provide various recognizable gesture commands to construct the application (a two-layer 
hierarchy scheme to significantly increase hand gesture command numbers presented for 
implementing real-life applications) and for operator identity recognition. Although vehicle 
robot navigation and positioning were also discussed in Ref. 12, the presented approaches did 
not involve hand gesture control. In contrast to Ref. 12, considering the effective and efficient 
utilization of AGVs in a smart factory, in this study, we develop a hand-gesture-control-based 
navigation system using a wearable armband to acquire SEMG and IMU sensing data for an 
AGV with ROS-based SLAM navigation, as discussed in Sect. 2.

2. Hand-gesture-control-based Navigation Using Wearable Armband with SEMG 
and IMU Sensing Data for AGV with ROS-based SLAM Navigation

 In this section, the developed hand-gesture-control-based navigation approach for a typical 
AGV platform with ROS-based SLAM navigation is described in detail. The proposed hand-
gesture-control-based navigation for the AGV essentially belongs to the recognition-based 
technique category (i.e., a complete gesture command action classified by the system) with the 
motion of the target vehicle completely regulated in accordance with the recognized gesture 
command from the operator. In the proposed scheme, the operator wears the Myo armband to 
continually acquire sensed activity data to perform the desired gesture command for controlling 
the AGV. To ensure effective control of the AGV without concern about false alarms (i.e., AGV 
motion driven by an unintended hand gesture), the system was designed to be able to understand 

Fig. 1. (Color online) Incorporation of human–robot interactions in AGV platform with ROS-based SLAM 
navigation by developing a hand-gesture-control-based AGV navigation scheme.
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the starting and ending timestamps of the data acquisition of the provided hand gesture 
command. Both the wake-up and end calls of the hand gesture recognition system are presented 
in this paper. In addition, to achieve smart and flexible AGV navigation, the proposed hand-
gesture-control-based navigation approach was incorporated in an AGV with typical ROS-based 
SLAM navigation. A master–slave AGV vehicle navigation management strategy is also 
presented.

2.1 Acquisition of SEMG and IMU sensor information from wearable Myo armband

 As mentioned in the previous section, the Myo armband was used in this work to acquire 
hand gesture activity data,(1) mainly the data of the SEMG and IMU sensors. Figures 2 and 3 
depict the eight-axis SEMG electrodes (a total of eight sensors set in a ring formation around the 
wearable device) and the nine-axis IMU sensor (including the three-axis accelerator, three-axis 
gyroscope, and three-axis magnetometer), respectively. As shown in Fig. 2, the operator wears 
the Myo armband on the upper forearm. When the operator extends their upper forearm, the 
eight-axis SEMG sensing data (SEMGi, i = 1, 2, …, 8, labeled in Fig. 2) are not zero values again 
and become active and variable from the immediate variations of the surface, and the muscle 
strength is obtained from the device. When the operator wearing the armband makes an arbitrary 
hand gesture, information about the variation of this gesture is acquired from the nine-axis IMU 
sensor in the device. Such variations in the gesture mainly contain information of the 
acceleration (from the three-axis accelerator) and the rate of angular change (from the three-axis 
gyroscope). As shown in Fig. 3, the three-axis accelerator data represent the variation in 
acceleration in the 3D (x, y, z) space when a gesture is performed; the data derived from the 
three-axis gyroscope contain variations in the angle in three different dimensions, namely roll, 
pitch, and yaw. The roll–pitch–yaw angle is also known as the Euler angle, which can be used to 
effectively describe rotation features, including the hand gestures with hand rotations in this 
work. Note that a typical IMU sensor has six axes because it employs a three-axis accelerator 
and a three-axis gyroscope. In contrast to typical six-axis IMUs, the Myo armband adopted in 
this work also has a three-axis magnetometer. To acquire hand gesture information, the sensing 
data from the three-axis magnetometer are used to help the gyroscope solve the problem that 
gravitational acceleration does not provide information on horizontal angle rotation. The nine-
axis IMU information (denoted Myo-IMUi, i = 1, 2, …, 9) for describing the varying 

Fig. 2. (Color online) SEMG sensor data acquisition with the wearable Myo armband for implementing the system 
wake-up call of the hand gesture recognition system (eight-axis SEMG).
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characteristics of different hand gestures is used to establish artificial neural network (ANN)-
based hand gesture command recognition for hand-gesture-control-based AGV navigation, as 
discussed in detail in the following section.

2.2	 Hand	 gesture	 command	 recognition	 by	 ANN	 classification	 models	 with	 nine-axis	
IMU information for hand-gesture-control-based AGV navigation

 Figure 4 illustrates the structure of the newly established ANN-based hand gesture command 
recognition system for hand-gesture-control-based AGV navigation. The constructed ANN 
recognition system was designed as a 9-8-9-5 calculation framework, in which four layers are 
included: the nine-node input layer for receiving the nine-axis IMU information from the Myo 
armband, the first hidden layer with eight nodes, the second hidden layer with nine nodes, and 
the five-node output layer for indicating five different types of hand gesture commands to 
navigate the target vehicle. As shown in Fig. 4, the outputs from the output layer of the 
constructed ANN were y1, y2, y3, y4, and y5, which indicated five different hand gesture 
commands to regulate vehicle motions, namely, forward increment, backward increment, 
clockwise increment, counterclockwise increment, and robot stop, respectively.
 Note that in the development of the ANN-based hand gesture command recognition system 
in this study, a dynamic hand gesture command is represented by a series of nine-axis IMU 
datasets observed within a certain time period with n continuous timestamp samples (of 1 s 
duration with n = 50 set in this work). To be able to send the IMU information of n continuous 
samples in one time period to the ANN for gesture command classification, – iMyo IMU  in Eq. 
(1) is estimated to accumulate n continuous IMU sets,

 
2

1 –
–

n
ijj

i
Myo IMU

Myo IMU
n

==
Σ , i = 1, 2, ..., 9, (1)

where – iMyo IMU  is the estimated root mean square value for all n collected IMU samples. 
Using Eq. (1), a continuous-time hand gesture command with n continuous nine-axis IMU sets 
can be represented in the simple form { }1 2 9,, ,Myo IMU Myo IMU Myo IMU− − … − , which 

Fig. 3. (Color online) IMU sensor data acquisition with the Myo armband for calculations of hand gesture 
recognition (nine-axis IMU with three-axis accelerator, three-axis gyroscope, and three-axis magnetometer).
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denotes the 9D feature parameter vector used for training and testing the ANN model used to 
classify the five hand gesture commands. In the training phase to establish the ANN hand 
gesture classification models, the backpropagation approach for model optimization was 
adopted. In addition, a sigmoid-type activation function is used in the output of each neuron of 
the constructed ANN, and the soft-max scheme is adopted for decisions in the output layer.
 In the design part of the AGV navigation, we designed a driverlike control scheme for AGV 
navigation using recognized hand gesture commands. Under the regulation of the presented 
vehicle control scheme, the target vehicle can perform the actions of “speed-up forward in a 
straight line”, “slow-down forward in a straight line”, “speed-up backward in a straight line”, 
“slow-down backward in a straight line”, “speed-up in a clockwise turn”, “slow-down in a 
clockwise turn”, “speed-up in a counterclockwise turn”, “slow-down in a counterclockwise 
turn”, and “stop immediately”. Such fine vehicle control design by hand gestures is similar to 
real vehicle-driving behavior with the common actions of “step on gas pedal to increase vehicle 
velocity”, “release gas pedal to decrease vehicle velocity”, “turn steering wheel left to move 
vehicle left”, “turn steering wheel right to move vehicle right”, and “pull handbrake to stop 
vehicle”.
 To achieve the above-mentioned vehicle regulation, in this work, the motion state of the 
vehicle is defined to include five different types: completely stopped (State-1, S1), moving 
forward (State-2, S2), moving backward (State-3, S3), moving right (State-4, S4), and moving 
left (State-5, S5). Initially, the vehicle is in state S1. In this scenario, the operator gives the 
gesture command of “forward increment” to change the state to S2, whereas if the gesture 
command of “backward increment” is made by the operator, the vehicle state changes to S3. In 
S2, the operator can still give the gesture command of “forward increment” or “backward 
increment” to speed up and slow down the vehicle, respectively. In S3, the velocity is increased 
in the backward direction by a series of “backward increment” gesture commands. The gesture 

Fig. 4. 9-8-9-5 ANN with nine input nodes (nine-axis IMU data obtained from the Myo armband), first hidden 
layer of eight nodes, second hidden layer of nine nodes, and output layer of five nodes (five gesture commands).
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command of “forward increment” can also be used in S3 to decrease the backward vehicle 
velocity. In both S2 and S3, the gesture commands “clockwise increment” and “counter-
clockwise increment” can also be given to change the states of the straight-line movement to S4 
and S5, respectively. In states S2, S3, and S4, the vehicle can be given the gesture command 
“robot stop” to make the vehicle enter S1. Equations (2)–(9) show such regulations on movements 
and rotations of the AGV.

 Forward speed-up: ( ) ( )_  _ 1 _forward speed t forward speed t forward gain= − +  (2)

 Forward slow-down: ( ) ( )_  _ 1 _forward speed t forward speed t backward gain= − −  (3)

 Backward speed-up: ( ) ( )_  _ 1 _backward speed t backward speed t backward gain= − +  (4)

 Backward slow-down: ( ) ( )_  _ 1 _backward speed t backward speed t forward gain= − −  (5)

 Right speed-up: ( ) ( )_ _ 1 _right angle t right angle t clockwise gain= − +  (6)

 Right slow-down: ( ) ( )_ _ 1 _right angle t right angle t counterclockwise gain= − −  (7)

 Left speed-up: ( ) ( )_ _ 1 _left angle t left angle t counterclockwise gain= − +  (8)

 Left slow-down: ( ) ( )_ _ 1 _left angle left angle t clockwise gaint = − −  (9)

 Note that in these equations, the indexes _forward gain, _backward gain, _clockwise gain, 
and _counterclockwise gain have positive values, all of which are determined by a simple 
procedure and are used to change the motion state of the vehicle motor. These four indexes are 
delivered when obtaining recognized gesture commands of forward increment (y1), backward 
increment (y2), clockwise increment (y3), and counterclockwise increment (y4), respectively.

2.3 Hand-gesture-control-based AGV navigation using ANN hand gesture command 
recognition with SEMG-driven system wake-up and end

 In this section, we discuss the use of the above-mentioned hand-gesture-control-based AGV 
navigation by ANN hand gesture command recognition in a practical online application. Note 
that when the hand gesture recognition system was used in a real-life application, the main 
problem was the acquisition of significant hand gesture command samples, i.e., the extraction of 
a meaningful gesture command segment with continuous-time nine-axis IMU data. To address 
this issue, two approaches were developed to finely extract the practical hand gesture command 
segment provided by the operator to classify gesture navigation commands: (1) an SEMG-driven 
system wake-up with a fixed-size IMU segment for ANN hand gesture command recognition 
and (2) an SEMG-driven system wake-up and end with a variable-size IMU segment for ANN 
hand gesture command recognition.
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 Table 1 shows that in the scenario wherein the operator with the Myo armband exerted 
strength within a certain short time period (1 s), all sample amplitudes of the eight SEMG 
channels around the Myo armband—SEMG1, SEMG2, …, and SEMG8—were obtained (50 
samples obtained in each SEMG channel with the sampling rate set at 50). Using all the observed 
data presented in Table 1, the sample amplitude curve of each of the eight SEMG channels was 
then further acquired and plotted, as shown in Fig. 5. Figure 5 shows that when a significant 
hand gesture command was performed, the fluctuations of the amplitude values of each SEMG 
channel in the axis of the sample timestamp were similar. Accordingly, a calculated SEMG 
sample representative of all eight SEMG samples was acquired. Representative SEMG samples 
were obtained using

 
2 2 21 2 8

8Detect
SEMG SEMG SEMGSEMG + +…+

= , (10)

where the calculated term SEMGDetect indicates the estimated value of the root mean square 
calculations on the sensing data of all eight SEMG channels of the Myo armband. In the SEMG-
driven system wake-up with the fixed-size IMU segment for ANN hand gesture command 
recognition, SEMGDetect derived from Eq. (10) was used to estimate the starting timestamp of the 
performed gesture command (i.e., wake up the gesture command recognition system); 

Table 1
Eight-axis SEMG information collected in time period of 1 s, in which sample strength (amplitude) variations of 
eight channels, SEMG1, SEMG2, …, and SEMG8, are provided (50 consecutive samples collected in eight SEMG 
channels, IMU sampling rate of Myo armband set as 50).

SEMG1 SEMG2 SEMG3 SEMG4 SEMG5 SEMG6 SEMG7 SEMG8
Sample-1 −4 2 −1 2 −1 −1 0 −1
Sample-2 −3 −1 −3 0 −2 −2 0 −2
Sample-3 −1 −3 −4 6 −1 0 −2 −1

Sample-48 −22 23 14 −13 −54 −81 −128 −30
Sample-49 55 −55 94 80 24 −82 −59 71
Sample-50 54 −48 −24 −36 −81 −63 102 −63

Fig. 5. (Color online) Sample amplitude curves of eight SEMG channels around Myo armband when operator 
exerts strength in time period of 1 s (IMU sampling rate set as 50).

� �
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furthermore, it was used to evaluate both the starting and ending timestamps of the gesture 
command made by the operator (i.e., wake-up and final ending gesture command recognition) in 
the SEMG-driven system wake-up and the end with the variable-size IMU segment for ANN 
hand gesture command recognition.
 As shown in Fig. 6(a), the presented hand-gesture-controlled AGV navigation by ANN hand 
gesture command recognition with the fixed-size IMU segment is incorporated with a typical 
ROS-based SLAM navigation scheme. When the operator wakes up the gesture recognition 
system by exerting significant strength in the upper forelimb, the estimated term SEMGDetect 
from the Myo armband becomes of interest; if SEMGDetect is larger than the set threshold value 

Fig. 6. Strategies developed for AGV navigation control during a continuous time period by ANN recognition 
using IMU data contained (a) in “fixed” decision window where the SEMG-driven system wake-up is considered 
alone (approach with extraction of the “fixed-size” IMU segment) and (b) in the “variable” decision window where 
both system wake-up and end are carried out (approach with extraction of the “variable-size” IMU segment).

(a) (b)
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(denoting successful system wake-up), the system is triggered to start to acquire consecutive 
IMU samples of the gesture (following the significant strength exerted, a specific gesture 
command is made by the operator). Note that in the scheme presented in Fig. 6(a), the extracted 
segment of consecutive IMU samples has a fixed size (i.e., a fixed time duration designed to 
collect IMU action samples for recognition; this duration was set to 1 s in this work). Different 
from this design with fixed-size IMU segment extraction, another design that uses a variable-
size window to collect IMU action samples is depicted in Fig. 6(b). As shown in Fig. 6(b), upon 
the additional importing of the IMU detection, IMUDetect, expressed in Eq. (11), the time period 
of the collected IMU action samples, which is the duration of the timestamps of system waking-
up expressed by Eq. (10) and the system end expressed in Eq. (11), becomes variable. The 
estimate of the term IMUDetect is similar to the term SEMGDetect used in the system wake-up 
phase (i.e., the root mean square calculations on the sensing data) and is used for estimating the 
end of IMU action sample extraction (i.e., the timestamp of the finished gesture command).

 
2 2 21 2 9

9Detect
IMU IMU IMUIMU + +…+

=  (11)

 Note that in the scheme of SEMG-driven system wake-up and end with the variable-size 
IMU segment, after system wake-up, IMU samples of the gestures made by the operator are 
continually acquired until the system end is finally reached by IMUDetect evaluation. As shown 
in Fig. 6(b), similar to the SEMGDetect evaluation in the use of system wake-up, IMUDetect 
evaluation is conducted during the period of hand gesture making, and when IMUDetect is 
smaller than the set threshold value (denoting the completion of the operated command), IMU 
sample extraction is ended immediately, and the collected IMU samples are sent to the ANN 
hand gesture recognition calculations for gesture command classification. Figure 7 illustrates the 
difference between the presented fixed-size and variable-size window schemes in the collection 
of meaningful IMU gesture command samples in real-life applications for navigating the AGV.

2.4 Hand-gesture-control-based navigation incorporating ROS-based SLAM 
autonomous navigation for AGV in smart manufacturing

 ROS-based SLAM navigation was further incorporated into the design of the presented hand-
gesture-control-based AGV navigation by ANN hand gesture command recognition with wake-
up and end detection of gesture data acquisition detailed in the previous section. The AGV 
platform with two types of navigation of the typical SLAM and the proposed hand gesture 
command control has considerably more flexibility than that with only the SLAM navigation 
alone in practical applications, enabling more complicated navigation paths and safer services 
with fewer dangerous incidents in real-life applications. To enable the AGV to achieve such dual 
navigation, we propose a master–slave AGV navigation management scheme. As shown in 
Fig. 8, in such a scheme, one master (i.e., ROS robot master) and multiple slaves (i.e., operator 
slaves) are contained. The mission of the ROS robot master has been to perform typical ROS-
based SLAM navigation on the AGV, and each operator slave defined in the scheme can regulate 
the AGV by hand-gesture-command-controlled AGV navigation. Note that in the presented 
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Fig. 7. (Color online) Differences in presented (a) fixed-size and (b) variable-size window schemes in collection of 
meaningful IMU gesture command samples in real-life applications for AGV hand gesture navigation.

Fig. 8. Master–slave scheme for regulating SLAM autonomous navigation and hand gesture navigation of operator 
in practical application scenario with n operators.

(a) (b)
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scheme, when an operator desires to control the navigation of the AGV by hand gesture 
commands, a service request to the robot master is made by the user in advance. Only when the 
robot master acknowledges the user’s request (i.e., the user is permitted to control the AGV) can 
the AGV then be navigated by hand gesture command control by the permitted user. Using the 
scheme presented in Fig. 8, the AGV navigation is concurrently regulated by navigation by ROS-
based SLAM and by operator hand gesture commands (as shown in Fig. 9). During a continuous 
time period, only one kind of navigation could be performed on the AGV: either ROS-based 
SLAM or hand gesture command control (by one of multiple operators).
 In the presented master–slave scheme for regulating the SLAM autonomous navigation and 
hand gesture navigation of the operator, some critical technical issues were considered and 
governed by effective policies, as summarized below.
• Switch from ROS-based SLAM to hand gesture command control
 In the scenario that AGV navigation is switched from ROS-based SLAM of the master to 
hand gesture command control of a specific operating user, a context switch process that can 
effectively retain the current executing information of the ROS-based SLAM navigation is 
considered (i.e., swapping the current SLAM navigation); for this phase, a navigation control 
block was also precisely designed to contain all types of execution data of SLAM navigation on 
the AGV.
• Switch from hand gesture command control to ROS-based SLAM
 Compared with the above-mentioned issue, the navigation switch to convert the hand gesture 
command control mode to the ROS-based SLAM mode was given more attention. Under such a 
condition, the context switch process had to be designed to be able to load the previous execution 
condition of the ROS-based SLAM navigation (i.e., swapping of the previous SLAM 
navigations). After loading the previous SLAM navigation information from the navigation 
control block, the AGV could continue the previously aborted SLAM navigation mission 
(making the AGV return to the position of the previously aborted SLAM navigation and 
resuming such navigation). In this phase, for fine AGV navigation management, it was necessary 
to provide an alternative to making the AGV return to the starting position of the previous 
SLAM navigation path and restart a new SLAM navigation mission.

Fig. 9. Enhanced AGV navigation performed with concurrent executions of ROS-based SLAM navigation and 
hand-gesture-control-based navigation.
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• Priority management of multiple AGV navigations
 In the proposed scheme, the ROS robot master with SLAM navigation and each of the 
multiple operator slaves that could perform hand-gesture-control-based navigation were given a 
suitable priority rank. It is important to have a detailed policy to dispatch all the defined master 
and slave AGV navigations in accordance with their set priority ranks in the case of an urgent 
and undisturbed ROS-based SLAM navigation or hand gesture control navigation requested by 
multiple slave operators simultaneously.
• Interrupt process with the timer design of AGV control
 To provide efficient AGV services in an overall consideration when a slave operator can 
control the AGV by hand gesture control for an excessive duration, it was necessary to impose 
an appropriate restriction on AGV usage. A feasible way to tackle this issue is to set an 
appropriate timer in the presented AGV navigation scheme, which will be used to regulate the 
time of hand gesture navigation by each slave operator.

3.	 Experiments

 We conducted an experiment on hand-gesture-control-based navigation for an AGV with 
ROS-based SLAM navigation using a wearable armband to acquire SEMG and IMU sensor data 
in an office laboratory. We used the popular TurtleBot wheeled-vehicle robot with the ROS 
system (also known as TurtleBot3). The robot system of TurtleBot3 has two types of models, the 
Burger type and the Waffle-Pi type; the latter was adopted in this study. The robot contained 
360° LiDAR for SLAM navigation, a single-board computer for simple data computation, an 
open-source control module (OpenCR) for robot motor control, a plate to hold the other 
components, and a rechargeable battery.(10) As shown in Fig. 10(a), a scenario to simulate a 
factory or manufacturing field was established in the laboratory, where we deployed an AGV 
with the ability of ROS-based SLAM navigation, and an operator wearing the Myo armband 
controlled the AGV navigation via recognized hand gesture commands. Figure 10(b) depicts the 
scene-depth graph of the laboratory, which was obtained using LiDAR of the AGV by the ROS 

Fig. 10. (Color online) (a) Laboratory scenario for performing AGV-robot SLAM incorporated with wearable 
SEMG-IMU hand gesture command recognition-based navigation and (b) map constructions made by AGV-robot 
SLAM (the scene-depth map of the laboratory office environment constructed for automatic navigation of the AGV 
robot).
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SLAM approach. As seen in Fig. 10(b), autonomous navigation of the AGV from the starting 
location to the destination location was successful using the ROS SLAM approach. In the 
experiment, the AGV navigation was planned to contain the typical ROS-based SLAM 
navigation and the hand-gesture-control-based navigation. As shown in Fig. 10(a), the former 
autonomous navigation paths were set to be from C to B and from B to C (i.e., starting at C and 
ending at B and starting at B and ending at C, respectively); the later operator-controlled 
navigation paths were set to be from A2 to A1 and from A2 to D (i.e., starting at A2 and ending 
at A1 and starting at A2 and ending at D, respectively). Tables 2 and 3 show the results of 
autonomous ROS-based SLAM navigation of the AGV from C to B and from B to C, 

Table 2
(Color online) Scene-depth images derived from automatic navigation of AGV-robot SLAM from C to B in 
continuous time period.

Automatic navigation of AGV-robot SLAM (from C to B)

Table 3
(Color online) Scene-depth images derived from automatic navigation of AGV-robot SLAM from B to C in 
continuous time period.

Automatic navigation of AGV-robot SLAM (from B to C)
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respectively, during which a series of detailed scene-depth images were derived from the LiDAR 
of the AGV. The experimental results of AGV navigation by hand gesture control of the operator 
are described in the following. 
 Table 4 shows five different categorizations of hand gesture commands used for AGV 
navigation. As shown in Table 4, these gestures are assigned the labels Label 1 to Label 5, 
denoting the AGV control commands of “Speed-up forward”, “Speed-up backward”, “Speed-up 
in a counterclockwise turn”, “Speed-up in a clockwise turn”, and “Stop immediately”, 
respectively. As mentioned in Sect. 2.2, these gesture commands were classified using the ANN 
recognition model. Table 5 presents the recognition accuracy of the constructed ANN model for 
the nine-axis IMU hand gesture classification. Note that in the ANN recognition experiments, 
the database contained 750 gesture commands, 150 of which were collected for each of the five 
gesture commands; of the 150 recorded actions for each command, half were used for ANN 

Table 4
(Color online) Five hand gesture commands used for AGV navigation.

Navigation gesture label Continuous-time hand gestures with Myo armband of SEMG and IMU

Label 1:
Speed-up forward
(Slow-down backward)

Label 2:
Speed-up backward
(Slow-down forward)

Label 3:
Speed-up in the counter-
clockwise turn
(Slow-down in a clockwise 
turn)

Label 4:
Speed-up in a clockwise turn
(Slow-down in a counter-
clockwise turn)

Label 5:
Stop immediately
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training and the other half were used as test data to evaluate the outside-test recognition rate of 
the trained ANN. Table 5 shows that the outside-test ANN recognition performance was 100%. 
This nine-axis IMU ANN hand gesture recognition system with perfect recognition had a 
positive effect on the hand-gesture-control-based AGV navigation by ANN gesture command 
recognition with SEMG-driven system wake-up and end.
 Finally, the performance of the presented ANN hand gesture command recognition with 
SEMG-driven system wake-up and end in the experimental phase of hand-gesture-control-based 
AGV navigation is listed in Tables 6–17. In this study, three test users (test users 1–3) and two 
strategies (mission-complete-oriented strategy and time-restriction-oriented strategy) were 
adopted to evaluate the performance of the presented hand-gesture-control-based AGV 
navigation approach. The performance results of test users 1–3 are presented in Tables 6–9, 
Tables 10–13, and Tables 14–17, respectively. The mission-complete-oriented strategy was 
focused on the completed time duration of the hand-gesture-controlled AGV navigation mission 
(e.g., in the same mission to complete navigation from A2 to A1 using the presented hand-
gesture-control-based AGV navigation approach, different time durations were obtained for 
each of fixed-size and variable-size IMU data extraction); in the time-restriction-oriented 
strategy, the main focus of the performance evaluations was the set restricted time duration (i.e., 
the timer with a fixed size) and the degrees of completion of an indicated mission of hand-
gesture-controlled AGV navigations (including evaluations of error values of the straight-line 
distance difference and the direction angle difference of the AGV final location to the indicated 
destination location). Figure 11 shows such evaluation criteria. Note that for both strategies, two 
different navigation missions were used to evaluate the performance: a simple mission to 
navigate from A2 to A1 [see Fig. 10(a)] and a complicated mission to navigate from A2 to D [also 
see Fig. 10(a)]. In the time-restriction-oriented strategy, time durations of 5 and 30 s were set for 
navigating from A2 to A1 and from A2 to D, respectively. As observed from the performance 
results of test user 1 for the mission-complete-oriented strategy (Tables 6 and 7), AGV hand-
gesture-controlled navigation by ANN recognition with fixed-size and variable-size IMU 
windows could effectively complete both the simple and the complex navigation missions. The 
average performances of ANN recognition with the variable-size window (5.8 s for A2 to A1 
and 31.8 s for A2 to D) were slightly better than those with the fixed-size window (7.8 s for A2 to 
A1 and 37.2 s for A2 to D). As observed from Tables 8 and 9, the performance results for the 
time-restriction-oriented strategy revealed that AGV hand-gesture-controlled navigation by 
ANN recognition with both fixed-size and variable-size IMU windows was competitive. In the 
simple navigation mission from A2 to A1 (see Table 8), the AGV hand-gesture-controlled 

Table 5
Confusion matrix showing perfect recognition performance of established ANN model with inputs of nine-axis 
IMU hand gesture information for classifications of five hand gesture commands.

Label 1 Label 2 Label 3 Label 4 Label 5
Label 1 75 0 0 0 0
Label 2 0 75 0 0 0
Label 3 0 0 75 0 0
Label 4 0 0 0 75 0
Label 5 0 0 0 0 75
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Table 6
Performances of user 1 for AGV hand-gesture-controlled navigation by ANN recognition with fixed-size [Fig. 6(a)] 
and variable-size [Fig. 6(b)] IMU segment extraction in mission-complete-oriented strategy (simple mission of 
hand-gesture-controlled navigation from A2 to A1).

Method Test
1st test (s) 2nd test (s) 3rd test (s) 4th test (s) 5th test (s) Average (s)

Fixed-size IMU data 
extraction 7 8 8 7 9 7.8

Variable-size IMU 
data extraction 6 6 6 5 6 5.8

Table 7
Performances of user 1 for AGV hand-gesture-controlled navigation by ANN recognition with fixed-size [Fig. 6(a)] 
and variable-size [Fig. 6(b)] IMU segment extraction in mission-complete-oriented strategy (complex mission of 
hand-gesture-controlled navigation from A2 to D).

Method Test
1st test (s) 2nd test (s) 3rd test (s) 4th test (s) 5th test (s) Average (s)

Fixed-size IMU data 
extraction 36 36 37 38 39 37.2

Variable-size IMU 
data extraction 32 32 32 30 33 31.8

Table 8
Performances of user 1 for AGV hand-gesture-controlled navigation by ANN recognition with fixed-size [Fig. 6(a)] 
and variable-size [Fig. 6(b)] IMU segment extraction in time-restriction-oriented strategy (simple mission of hand-
gesture-controlled navigation from A2 to A1 with 5 s time duration).

Method Test
1st test 2nd test 3rd test 4th test 5th test Average

Fixed-size IMU data 
extraction (9.8 cm, 0°) (10.5 cm, 0°) (7.2 cm, 0°) (7.4 cm, 0°) (8.6 cm, 0°) (8.7 cm, 0°)

Variable-size IMU 
data extraction (3.2 cm, 0°) (2.6 cm, 0°) (3 cm, 0°) (4.2 cm, 0°) (2.5 cm, 0°) (3.1 cm, 0°)

Table 9
Performances of user 1 for AGV hand-gesture-controlled navigation by ANN recognition with fixed-size (Fig. 6(a)] 
and variable-size [Fig. 6(b)] IMU segment extraction in time-restriction-oriented strategy (complex mission of 
hand-gesture-controlled navigation from A2 to D with 30 s time duration).

Method Test
1st test 2nd test 3rd test 4th test 5th test Average

Fixed-size IMU data 
extraction (74.3 cm, −3°) (99.1 cm, 5°) (90.7 cm, 5°) (106.2 cm, −5°) (121.8 cm, 0°) (98.4 cm, 3.6°)

Variable-size IMU 
data extraction (18.5 cm, 10°) (75.5 cm, 5°) (43.3 cm, 0°) (57.7 cm, 0°) (42.3 cm, 0°) (47.5 cm, 3°)

Table 10
Performances of user 2 for AGV hand-gesture-controlled navigation by ANN recognition with fixed-size [Fig. 6(a)] 
and variable-size [Fig. 6(b)] IMU segment extraction in mission-complete-oriented strategy (simple mission of 
hand-gesture-controlled navigation from A2 to A1).

Method Test
1st test (s) 2nd test (s) 3rd test (s) 4th test (s) 5th test (s) Average (s)

Fixed-size IMU data 
extraction 7 8 7 8 10 8

Variable-size IMU 
data extraction 6 6 7 6 6 6.2



3530 Sensors and Materials, Vol. 34, No. 9 (2022)

Table 11
Performances of user 2 for AGV hand-gesture-controlled navigation by ANN recognition with fixed-size [Fig. 6(a)] 
and variable-size [Fig. 6(b)] IMU segment extraction in mission-complete-oriented strategy (complex mission of 
hand-gesture-controlled navigation from A2 to D).

Method Test
1st test (s) 2nd test (s) 3rd test (s) 4th test (s) 5th test (s) Average (s)

Fixed-size IMU data 
extraction 38 42 42 39 38 39.8

Variable-size IMU 
data extraction 35 35 35 33 33 34.2

Table 12
Performances of user 2 for AGV hand-gesture-controlled navigation by ANN recognition with fixed-size [Fig. 6(a)] 
and variable-size [Fig. 6(b)] IMU segment extraction in time-restriction-oriented strategy (simple mission of hand-
gesture-controlled navigation from A2 to A1 with 5 s time duration).

Method Test
1st test 2nd test 3rd test 4th test 5th test Average

Fixed-size IMU data 
extraction (10.3 cm, 0°) (10.5 cm, 0°) (9.5 cm, 0°) (7.6 cm, 0°) (6.1 cm, 0°) (8.8 cm, 0°)

Variable-size IMU 
data extraction (3.2 cm, 0°) (2.6 cm, 0°) (3 cm, 0°) (4.2 cm, 0°) (2.5 cm, 0°) (3.1 cm, 0°)

Table 13
Performances of user 2 for AGV hand-gesture-controlled navigation by ANN recognition with fixed-size [Fig. 6(a)] 
and variable-size [Fig. 6(b)] IMU segment extraction in time-restriction-oriented strategy (complex mission of 
hand-gesture-controlled navigation from A2 to D with 30 s time duration).

Method Test
1st test 2nd test 3rd test 4th test 5th test Average

Fixed-size IMU 
data extraction (151.2 cm, −5°) (131.7 cm, 10°) (140.5 cm, −5°) (139.9 cm, 10°) (132.2 cm, 5°) (139.1 cm, 7°)

Variable-size IMU 
data extraction (72.5 cm, 10°) (136.7 cm, 5°) (45.5 cm, 40°) (19.5 cm, 70°) (20.3 cm, 80°) (58.9 cm, 41°)

Table 14
Performances of user 3 for AGV hand-gesture-controlled navigation by ANN recognition with fixed-size [Fig. 6(a)] 
and variable-size [Fig. 6(b)] IMU segment extraction in mission-complete-oriented strategy (simple mission of 
hand-gesture-controlled navigation from A2 to A1).

Method Test
1st test (s) 2nd test (s) 3rd test (s) 4th test (s) 5th test (s) Average (s)

Fixed-size IMU data 
extraction 8 8 9 8 8 8.2

Variable-size IMU 
data extraction 7 6 6 6 6 6.2

Table 15
Performances of user 3 for AGV hand-gesture-controlled navigation by ANN recognition with fixed-size [Fig. 6(a)] 
and variable-size [Fig. 6(b)] IMU segment extraction in mission-complete-oriented strategy (complex mission of 
hand-gesture-controlled navigation from A2 to D).

Method Test
1st test (s) 2nd test (s) 3rd test (s) 4th test (s) 5th test (s) Average (s)

Fixed-size IMU data 
extraction 46 41 40 38 39 40.8

Variable-size IMU 
data extraction 36 36 38 35 37 36.4
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navigation by ANN recognition with the variable-size IMU window achieved a satisfactory 
average performance of (3.1 cm, 0°). For the complex navigation mission of A2 to D (Table 9), 
although the differences from the straight-line distance and the direction angle were slightly 
larger, the performance results were still acceptable. We conducted a similar analysis of the 
performances of test users 2 and 3 (see Tables 10–13 for test user 2 and Tables 14–17 for test user 
3). The experimental results presented in Tables 6–17 revealed that in the practical application 
scenario of smart manufacturing, the proposed AGV navigation by hand gesture command 
control is feasible for the simple navigation of short paths, enabling fast and reliable AGV 
positioning.

Table 16
Performances of user 3 for AGV hand-gesture-controlled navigation by ANN recognition with fixed-size [Fig. 6(a)] 
and variable-size [Fig. 6(b)] IMU segment extraction in time-restriction-oriented strategy (simple mission of hand-
gesture-controlled navigation from A2 to A1 with 5 s time duration).

Method Test
1st test 2nd test 3rd test 4th test 5th test Average

Fixed-size IMU data 
extraction (7.1 cm, 0°) (11 cm, 0°) (6.5 cm, 0°) (6.3 cm, 0°) (9.2 cm, 0°) (8.0 cm, 0°)

Variable-size IMU 
data extraction (9.9 cm, 0°) (3.5 cm, 0°) (6.4 cm, 0°) (9.2 cm, 0°) (4.2 cm, 0°) (6.6 cm, 0°)

Table 17
Performances of user 3 for AGV hand-gesture-controlled navigation by ANN recognition with fixed-size [Fig. 6(a)] 
and variable-size [Fig. 6(b)] IMU segment extraction in time-restriction-oriented strategy (complex mission of 
hand-gesture-controlled navigation from A2 to D with 30 s time duration).

Method Test
1st test 2nd test 3rd test 4th test 5th test Average

Fixed-size IMU 
data extraction (166.4 cm, 2°) (105.7 cm, −3°) (91.6 cm, −4°) (73.3 cm, 

−10°) (108 cm, −2°) (109 cm, 4.2°)

Variable-size IMU 
data extraction (38 cm, 10°) (54.9cm, −10°) (113.4 cm, −5°) (15.1 cm, 36°) (126.4 cm,−2°) (69.6 cm, 12.6°)

Fig. 11. Criteria used to evaluate the finished AGV position status of mission by hand-gesture-controlled AGV 
navigation (including the straight-line distance difference and the direction angle difference to the destination 
location) in the time-restriction-oriented strategy (times of 5 s for the simple path and 30 s for the complicated path).
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4. Conclusions

 In this work, we presented a hand-gesture-control-based AGV navigation approach using the 
wearable Myo armband with SEMG and IMU sensors. In the proposed approach, an AGV 
navigation mission was completed using a series of hand gesture commands (mainly move 
forward, move backward, turn left, turn right, and stop). A recognition system to classify the 
hand gesture commands was constructed using an ANN with a nine-axis IMU, in which an 
SEMG-driven system wake-up and end were designed and finely incorporated. The proposed 
navigation approach has competitive performance and can be incorporated with typical ROS-
based SLAM autonomous navigation to enhance the functionality of the AGV and promote 
smart manufacturing based on human–robot interactions. In contrast with command-based 
vehicle navigation, a human–robot collaboration approach to achieve more advanced navigation 
and interactions for AMR devices will be considered in future work.
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