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	 In this study, we explore the process performance of flank-end milling of Ti-6Al-4V titanium 
alloy. Experiments and convolutional neural networks are used to establish a predictive model of 
machining quality. Sensory tool holders are used to capture the cutting force signals during 
machining and to perform feature extraction. The neural network model utilizes feature data as 
input with surface roughness and dimensional accuracy as outputs. The experimental framework 
can be divided into several stages: machining, cutting data collection, surface roughness and 
machining accuracy measurement, and neural network parameter setting. The experimental 
parameters consisted of cutting speed, feed per tooth, axial cutting depth, and radial cutting depth. 
Each parameter has three levels. Therefore, for a full-factor experiment, 81 sets of experimental 
data are obtained. Furthermore, 162 sets of data are obtained by performing each experiment 
twice. In the neural network prediction results, the minimum average percentage for surface 
roughness prediction error is below 10% when grouping the feed per tooth. This result was 
considered favorable compared with the error percentage of 18% obtained from predictions through 
training with all data. On the other hand, the machining accuracy prediction results were better 
when training with all data, with the error percentage being approximately 20%.

1.	 Introduction

	 Titanium alloys have low weight, high strength, good corrosion resistance, and good heat 
resistance. Moreover, they maintain good strength and stability in working environments with a 
temperature of approximately 500 °C. Therefore, they are widely used in the aerospace industry. 
However, their physical and chemical properties create problems during machining, such as poor 
thermal conductivity, easy accumulation of heat, high chemical affinity, and easy sticking of chips. 
These result in rapid tool wear, which in turn affects workpiece quality. In a cutting process, 
surface roughness and machining accuracy are two important indicators of the quality of a finished 
product; they are affected by machining parameters such as the spindle speed, feed rate, cutting 
depth, and step over. Because of the complexity of cutting behavior and operating conditions, the 
relationship between input parameters and cutting results is often nonlinear. We have aimed to 
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establish a mathematical model that can predict production quality according to operating conditions. 
Such a systematic model can predict the effectiveness of given machining parameters for the 
machining result, without the need for determining machining parameters based on the experience 
of the operator.
	 Neural networks are often used to establish mathematical cutting models. In previous studies, 
the cutting force was used as the output result because the cutting force data could be obtained 
through online measurements and could be verified.(1–6) Alique et al. developed a versatile neural 
network model to predict the mean cutting force under commonly encountered conditions during 
online operation.(2) This model could describe the resultant mean cutting force with changes in 
plant inputs such as the feed rate and cutting depth. Cus et al. used an artificial neural network 
(ANN) to predict the cutting forces in ball-end milling operations.(3) Comparisons of the neural 
network predictions with experiments revealed a 4% error in the prediction of three cutting force 
components. Kadirgama and Abou-El-Hossein used a neural network method to predict the cutting 
force for milling 618 stainless steel.(4) The cutting speed, feed rate, axial depth, and radial depth 
were used as inputs, and the cutting force was provided as the output. The neural network prediction 
result showed an acceptable error.
	 The cutting force is easy to measure and can be used to analyze the cutting results. However, 
it cannot be directly used to determine machining quality. A finished product after machining 
should have good dimensional accuracy and surface roughness to achieve suitable matching 
properties, wear resistance, contact stiffness, and vibration characteristics and to satisfy other 
assembly and functional requirements. However, the direct measurement of machining quality 
requires the use of special devices or machining quality can be determined through offline 
measurements. The measurement efficiency is low and the cost is high. In recent years, with 
improvements in sensing capabilities and advancements in networking technology, wireless sensory 
tools have often been used to collect cutting process data such as vibration, current, acceleration, 
and cutting force. These tools are widely used for monitoring the machining of machine tools and 
for realizing effective online monitoring systems. Ye proposed multiaxis machining technology 
for manufacturing turbine blades.(7) He used a sensory tool holder system for analysis during the 
rough machining of turbine blades; it improved process planning and shortened the processing 
time. Chen et al. used a sensory tool holder to measure the cutting forces during thin-wall milling 
and established data coordinate transformation between the tool and the workpiece.(8) They 
established modified tool paths to compensate for volumetric errors according to deformation 
data. This method successfully improved machining precision and processing efficiency. By 
collecting signals using sensors, an effective prediction model for machining quality can be 
established, reducing production costs and improving processing efficiency.
	 Early studies often used the cutting conditions as the input variables of an ANN for establishing 
the cutting model. The amount of training data, the number of hidden layers, and  the model 
structure were all small. In recent years, with improvements in computing capabilities, deep 
learning algorithms have been developed to perform the inductive analysis of big data. In the past, 
real-time processing signals collected using sensors were used to monitor abnormal process 
conditions. However, owing to the large amount of data, their use to determine or predict machining 
results was impractical. Presently, such data can be captured, used as neural network input 
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information, and analyzed to generate real-time predictive models. Lu et al. used a wireless sensory 
tool holder to collect machining process signals and then extract the features of data.(9) They 
adopted the deep forest algorithm to determine surface quality. The results could be applied to 
ensure surface quality and improve machining efficiency. Huang et al. predicted tool wear by 
using a holistic-local long short-term memory (LSTM) model. With rapid developments in deep 
learning methods, data features can be captured effectively.(10)

	 In this study, a sensory tool holder was used to collect the cutting force signals during machining, 
fast Fourier transform (FFT) was performed to extract the features, and finally, the feature 
information was imported into a convolutional neural network (CNN) model for training. Dimensional 
accuracy and surface roughness were chosen as output results. It is expected that an effective 
prediction model can be developed.

2.	 Materials and Methods

2.1	 Materials

	 The material tested in this study was Ti-6Al-4V titanium alloy. This alloy has excellent 
mechanical properties and corrosion resistance, low weight, high temperature resistance, high 
fatigue strength, and low thermal expansion coefficient. It is also nonmagnetic. Moreover, because 
of its high melting point, it has low thermal conductivity and high chemical affinity. After processing, 
chips can very easily adhere to the cutting tool and workpiece surface, which accelerates the wear 
of the milling tool.(11) Owing to the low thermal conductivity of Ti-6Al-4V, this problem is more 
severe. Table 1 shows the mechanical properties of the Ti-6Al-4V alloy. These data are provided 
by the material supplier S-Tech Corp.(12)

2.2	 Neural network

1) ANN
	 Recently, machine learning has emerged as a useful artificial intelligence approach for achieving 
effective knowledge discovery from a database (i.e., data mining). ANNs are used in machine 
learning. They can imitate the human neural network and use multilayer nonlinearity to learn the 
features of data. They have a parallel structure and high calculation speed, and they can be used 
to establish models without mathematical formulas; therefore, useful results can be obtained from 
a large amount of training data. Moreover, because the parameters are independent, changing the 

Table 1
Mechanical properties of Ti-6Al-4V alloy.
Density (g/cm3) 4.43
Poisson’s Ratio 0.34
Young’s Modulus (GPa) 113.8
Ultimate Stress (MPa) 993
Yield Stress (MPa) 924
Elongation (%) 14
Hardness (Rockwell) HRC36
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cutting conditions does not affect the analysis results. For a model that analyzes the processing 
signals collected using a sensor, various working conditions can be examined without modifying 
the model structure.
	 Various types of ANNs have been developed for applications in different fields, such as deep 
neural network, recurrent neural network, CNN, and LSTM. Among these, the CNN has a local 
weight shared special structure that affords unique advantages for image and pattern recognition.(13)

2) CNN
	 The CNN structure mainly includes the convolutional layer, pooling layer, and fully connected 
network; the convolutional and pooling layers can be alternately repeated many times. A complete 
CNN structure is formed by stacking these layers.
	 The convolutional layer is the core of the CNN. It mainly comprises different convolution 
kernels that perform convolution operations on the input data, and a filter is used to move on the 
data and to continue to calculate a matrix dot product. The information obtained after performing 
convolutions is called a feature map. Usually, a pooling layer is inserted between the convolutional 
layers to reduce the spatial size of the data. This can reduce the number of parameters in the 
network, reduce the consumption of computing resources, and effectively control overfitting. 
Commonly used pooling methods include max pooling and average pooling. Each depth slice of 
the input data is processed separately to reduce its spatial size. The fully connected layer has the 
same structure as the general neural network.

2.3	 Experiment procedure

	 In this study, we used NX software to plan the tool path and Tongtai CT-350 with a Siemens 
Sinumerik 840D sl controller B-Type five-axis machine tool for milling experiments.(14) The 
cutting tool used was a four-flute carbide end mill with a diameter of 10 mm. A Pro-micron GmbH 
& Co. KG sensory tool holder was used to collect the cutting force signals during machining. Table 
2 shows the specifications of the sensory tool holder. The axial force, torque, and bending moment 
in the XY direction were measured during machining, and these data were wirelessly transmitted 
to the computer. The bending moment coordinate graph in the XY direction was used to observe 
the real-time blade force. The neural network program was written using Python. It extracted data 
features and imported them into the neural network for model training and prediction.
	 The cutting workpiece was a Ti-6Al-4V alloy cube with dimensions of 80 × 80 × 80 mm3. The 
machining parameters included the cutting speed, feed per tooth, axial cutting depth, and radial 

Table 2
Specifications of sensory tool holder.
Measuring frequency (Hz) 2500
Maximum allowable speed (rpm) 18000
Operating temperature (℃) 0–50
Collet size ER20
Spindle taper HSK63A
Diameter (mm) 34
Total length (mm) 100
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cutting depth, and each parameter was set to three levels, as shown in Table 3. These combinations 
of processing parameters required 81 sets of experiments for performing a full-factorial experiment 
of flank-end milling, and 162 sets of data were obtained because cutting was performed twice. 
Before machining, the face milling cutter was used for reference surface milling, and then machining 
was performed side-by-side according to the machining parameters.(15) The machining results 
were measured after the completion of machining. Figure 1 shows the cutting path and the actual 
cutting screen. To control tool wear, different tools were used for each axial depth of cut. To verify 
the machining results, a TESA-hite Magna 400 height gauge was used to measure the finished 
and reference surfaces of the workpiece. We measured the three points on the two surfaces and 
took the average to calculate the dimensional error between the two surfaces, as shown in Fig. 2. 
A Hommel-Etamic T8000 measuring instrument was used to measure surface roughness. We 
measured each surface thrice and took the average, as shown in Fig. 3.

Table 3
Machining parameters.

Cutting speed (m/min) Feed per tooth (mm/tooth) Axial depth of cut (mm) Radial depth of cut (mm)
1 40 0.03 5 0.05
2 70 0.06 10 0.1
3 100 0.1 20 0.2

Fig. 1.	 (Color online) (a) Processing path and (b) machining.

(a)

Fig. 2.	 (Color online) Dimension measurement (TESA-hite Magna 400).

(b)
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2.4	 Signal preprocessing

	 The data obtained from the experiment comprised cutting force signals, as shown in Fig. 4, 
with the tension, torque, and bending moment from top to bottom. In each experiment, 10000 sets 
of bending moment data were captured during a 4 s period and used as input information. Signal 
features were extracted before being imported into the neural network for training. Feature 
extraction was performed to obtain meaningful features from the original data and to improve the 
efficiency of the analysis of a large amount of data. FFT was used to convert a cutting force signal 
into the frequency domain. Because the sampling frequency of the sensory tool holder was 2500 
Hz, the bandwidth after FFT was 1250 Hz. Figure 5 shows the frequency spectrum under idling 
with a spindle speed of 3000 rpm. We saw a peak corresponding to the spindle speed with 50 Hz. 
Figure 6 shows the frequency spectrum during cutting. We observed peaks corresponding to the 
spindle speed and its harmonic frequencies.

Fig. 3.	 (Color online) Roughness measurement (Hommel-Etamic T8000).

Fig. 4.	 (Color online) Cutting force signals. 
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2.5	 Modeling setup

	 In this study, we used the Google Colab online Python compiler importing PyTorch to edit and 
run the Python code. PyTorch is an optimized tensor library primarily used for deep learning. We 
used PyTorch to build a kernel module of the CNN model. The input data of this study is the 
bending moment spectrum after FFT, and the format is a one-dimensional matrix. Thus, the CNN 
model set the number of input channels to one. The model was a single hidden layer CNN architecture 
and contained a convolutional layer, a pooling layer, and a fully connected layer. Table 4 shows 
the parameter settings for the CNN model.
	 There are 162 sets of experimental data in this experiment, which were grouped according to 
feed per tooth into Fz0.03, Fz0.06, and Fz0.1. Each group contained 54 sets of data. Fifty sets were 
randomly selected for training and the other four sets for prediction. For comparisons, ungrouped 
data training was also performed.
	 After repeated training, the number of trainings for neural network was set to 1000, and the 
training results were verified every 10 trainings. Performing training an excessive number of times 
will cause over-training, leading to a waste of time. The mean squared error (MSE) was used as 
the Train AVG Loss function to evaluate the modeling results, as follows:	  

	 ( )2
1

1 .     
n

i i
i

MSE y y
n =

= −∑ 	 (1)

Fig. 5.	 (Color online) Bending moment spectrum under idling (spindle speed: 3000 rpm).

Fig. 6.	 (Color online) Bending moment spectrum during cutting.
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	 Train AVG loss is mainly used to evaluate the convergence of the model. If the trained model 
has been trained to a stable stage, train AVG loss will also be stable.
	 The loss function was used to estimate inconsistency between the predicted value obtained 
using the model and the true value. The smaller the loss function, the better was the robustness 
of the model. The root mean squared error (RMSE) was set as the model convergence criterion, 
as follows:

	 ( )2
1

1   .
n

i i
i

RMSE y y
n =

= −∑ 	 (2)

	 According to the feed per tooth grouping and training with all data, different training parameters 
and convergence criteria (RMSEs) were given. After convergence test analysis, the final training 
parameters and convergence conditions were set as shown in Table 5.

3.	 Results and Discussion

3.1	 Surface roughness

	 The 162 sets of roughness values were measured using the surface roughness meter and arranged 
in order from small to large. Figure 7 shows the surface roughness distribution. The roughness 
values were divided into three groups corresponding to different feeds per tooth, which is an 
important factor that affects surface roughness in straight side edge end milling. When training 
was completed, four sets of test data were randomly selected to compare the results. The tests were 
performed thrice, and all RMSEs reached the convergence criteria. The individual and average 
percent errors were calculated. Table 6 shows the roughness prediction results according to the 

Table 4
Parameters of CNN.
Number of input channels 1
Number of output channels 16
Kernel size 500
Stride 300
Padding 200
Pooling size 3 (stride = 2)
Activation function ReLU

Table 5
Final training parameters and convergence conditions

Learning rate Training times Batch size Convergence criteria
Fz 0.03 0.0015 1000 25 0.02
Fz 0.06 0.0015 1000 25 0.05
Fz 0.1 0.0015 1000 25 0.1
All 0.0015 1000 75 0.15
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Fig. 7.	 (Color online) Surface roughness distribution.

Fig. 8.	 (Color online) Minimum error of roughness prediction.

Table 6
Roughness prediction results.

Convergence 
criteria RMSE Error of test data Average (%)1st (%) 2nd (%) 3rd (%) 4th (%)

FZ 0.03 0.02
1st 0.0109 8.79 9.60 2.20 1.24 5.46
2nd 0.01181 8.48 5.90 7.81 1.23 5.86
3rd 0.01495 7.68 6.99 9.78 6.26 7.68

FZ 0.06 0.05
1st 0.03646 3.86 5.87 13.59 9.09 8.10
2nd 0.01676 1.86 4.22 3.70 6.54 4.08
3rd 0.03113 9.11 8.98 7.08 5.47 7.66

FZ 0.1 0.1
1st 0.07522 4.72 11.52 7.19 7.38 7.70
2nd 0.06669 9.46 7.18 5.68 4.60 6.73
3rd 0.089 1.72 12.31 15.58 2.63 8.06

ALL 0.15
1st 0.13974 25.09 68.90 28.52 8.32 32.71
2nd 0.07989 33.29 15.88 16.39 7.34 18.23
3rd 0.11842 40.35 16.33 24.33 1.96 20.74

feed per tooth grouping; the average error percentage was within 10%. However, the minimum 
average error percentage was approximately 18% for the full data training results, as shown in 
Fig. 8.
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Table 7
Dimensional accuracy prediction results.

Convergence 
criterial RMSE Error of test data Average (%)1st (%) 2nd (%) 3rd (%) 4th (%)

FZ 0.03 0.01
1st 0.0043963 28.39 55.37 30.70 1.90 29.09
2nd 0.0087497 17.70 81.48 40.28 16.25 38.93
3rd 0.0053993 28.49 22.37 74.64 6.79 33.07

FZ 0.06 0.01
1st 0.0049806 23.49 45.72 10.75 84.17 41.03
2nd 0.0098533 13.11 36.60 29.66 50.46 32.46
3rd 0.0067884 18.76 89.21 80.55 11.24 49.94

FZ 0.1 0.01
1st 0.0082456 104.51 27.17 18.65 141.32 72.91
2nd 0.0046378 12.70 57.10 43.97 128.54 60.58
3rd 0.0059726 29.61 23.73 72.83 98.51 56.17

ALL 0.01
1st 0.0048844 22.25 93.58 19.45 21.68 39.24
2nd 0.0065582 4.32 51.13 52.59 0.90 27.24
3rd 0.0071992 5.03 11.00 30.29 31.16 19.37

Fig. 9.	 (Color online) Dimensional accuracy distribution.

3.2	 Dimensional accuracy

	 The 162-dimensional accuracy error values were arranged in order from small to large. Figure 
9 illustrates the dimensional accuracy distribution. The distribution indicated a gouging or excess 
phenomenon, and it had no cluster correlation with the four main parameters of the experimental 
plan (i.e., cutting speed, feed per tooth, axial cutting depth, and radial cutting depth). We grouped 
the training data in a manner similar to roughness training. After the convergence test analysis, 
the final training parameters and convergence conditions were obtained. Training with all data 
showed the best prediction results, with the minimum average error being less than 20%, as shown 
in Table 7 and Fig. 10. Group training with feed per tooth showed worse results than training with 
all data. The results of group training with the other parameters were also poorer. Given these 
results, it is speculated that the parameters are not the main factor affecting the outcome. Furthermore, 
the number of samples in group training was very small, resulting in poor training results and an 
inability to generate good prediction models.
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4.	 Conclusions

	 In this study, we used sensory tool holders to collect machining data and to perform signal 
processing. The CNN model was written in Python and the processed data were imported into a 
neural network for training in order to predict machining accuracy and surface roughness. The 
following conclusions were obtained from this study.
(1)	When predicting surface roughness based on the feed per tooth grouping, the minimum average 

error percentage of the prediction was less than 10%. Therefore, the obtained prediction results 
were accurate and better than those obtained by training with all data.

(2)	For titanium alloy machining accuracy prediction, the results of training with all data were 
better than those of training using groups. The feed per tooth was clearly not the factor that 
most affected machining accuracy. The error percentage of the predicted results was as large 
as 20%. This is speculated to be the result of an insufficient number of training groups. In the 
future, the number of training groups will be increased to improve the model.

(3)	Gouging or excess may occur in titanium alloy machining. The present model cannot accurately 
predict these phenomena. In the future, in addition to increasing the number of training groups, 
the tool wear data will be considered to improve dimensional accuracy error prediction.

Acknowledgments

	 The authors would like to thank all colleagues and students who contributed to this study. This 
research did not receive any specific grant from funding agencies in the public, commercial, or 
not-for-profit sectors. This manuscript was edited by Wallace Academic Editing.

Conflicts of Interest

	 The authors declare that there are no conflicts of interest regarding the publication of this paper.

Fig. 10.	 (Color online) Minimum error of dimensional accuracy prediction.



3252	 Sensors and Materials, Vol. 34, No. 8 (2022)

References

	 1	 S. J. Ojolo, S. O. Ismail, and O. T. Yusuf: Int. J. Eng. Technol. Innov. 3 (2013) 259.
	 2	 A. Alique, R. E. Haber, R. H. Haber, S. Ros, and C. Gonzalez: Proc. 2000 IEEE Int. Symp. Intelligent Control, 

held jointly with the 8th IEEE Mediterranean Conf. Control and Automation (Cat. No.00CH37147) (2000) 121. 
https://doi.org/10.1109/ISIC.2000.882910

	 3	 F. Cus, U. Zuperl, and M. Milfelner: Int. J. Gen. Syst. 35 (2006) 603. https://doi.org/10.1080/03081070600782022
	 4	 K. Kadirgama and K. A. Abou-El-Hossein: J. Appl. Sci. 6 (2006) 31. https://doi.org/10.3923/jas.2006.31.34
	 5	 T. Irgolic, F. Cus, M. Paulic, and J. Balic: Procedia Eng. 69 (2014) 804. https://doi.org/10.1016/j.proeng.2014.03.057
	 6	 I. Zagórski1, M. Kulisz, and A. Semeniuk: II Int. Conf. Computational Methods in Engineering Science (CMES’17) 

15 (2017) 02001. https://doi.org/10.1051/itmconf/20171502001
	 7	 H. L. Ye: Research on Efficiency Improvement for Five-axis Rough Machining of Aerospace Turbine Blade, 

Unpublished master's dissertation. Cheng Shiu University, Taiwan (2019).
	 8	 Y. W. Chen, Y. F. Huang, K. T. Wu, S. J. Hwang, and H. H. Lee: Int. J. Adv. Manuf. Technol. 108 (2020) 299. 

https://doi.org/10.1007/s00170-020-05375-x
	 9	 Z. Lu, M. Wang, and W. Dai: Sensors 19 (2019) 1847. https://doi.org/10.3390/s19081847
	10	 S. M. Huang, Y. W. Chan, C. H. Chang, T. C. Kang, C. T. Yang, and Y. T. Tsai: Frontier Computing (FC 2019) 

Lect. Notes Electrical Engineering 551 (2020) 382. http://doi.org/10.1007/978-981-15-3250-4_45
	11	 Y. W. Chan, T. C. Kang, C. T. Yang, C. H. Chang, S. M. Huang, and Y. T. Tsai: J. Supercomput. 78 (2021) 810. 

https://doi.org/10.1007/s11227-021-03903-4
	12	 S-Tech Corp.: http://www.s-tech.com.tw/en/ (accessed April 2020)
	13	 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner: Proc. IEEE 86 (1998) 2278. https://doi.org/10.1109/5.726791
	14	 J. N. Lee, C. H. She, and S. L. Chen: Adv. Sci. Lett. 8 (2012) 119. https://doi.org/10.1166/asl.2012.2481 
	15	 J. N. Lee, C. H. She, C. B. Huang, H. S. Chen, and H. K. Kung: Key Eng. Mater. 625 (2015) 402. https://doi.

org/10.4028/www.scientific.net/KEM.625.402

About the Authors

	 Ming-Hsu Tsai received his B.S., M.S., and Ph.D. degrees from National Chiao 
Tung University, Taiwan, in 2000, 2003, and 2010, respectively. He is now an 
assistant professor in the Department of Mechanical Engineering at Cheng Shiu 
University. His research interests are in the finite element method, the design 
and analysis of machine tools, intelligent manufacturing, and machine networking 
platforms.

	 Jeng-Nan Lee received his Ph.D. degree in mechanical engineering from National 
Cheng Kung University. He is currently a professor in the Department of 
Mechanical Engineering at Cheng Shiu University. His research interests include 
the integration of CAD/CAE/CAM, multi-axis machining and toolpath 
optimization, additive manufacturing, rotary ultrasonic machining, intelligent 
manufacturing, and the evaluation of machine tool manufacturing quality.



Sensors and Materials, Vol. 34, No. 8 (2022)	 3253

	 Ming-Jhang Shie received his M.S. degree from Cheng Shiu University, Taiwan, 
in 2002. He is now a Ph.D. student in the Graduate Institute of Mechatronics 
Engineering at Cheng Shiu University, Taiwan. His main research interests are 
in CAD/CAM and five-axis machining technology.

	 Ming-Hong Deng received his M.S. degree in mechatronic engineering in 2020 
from Cheng Shiu University, Taiwan. His main research interests are in multi-
axis machining and process optimization. He is now a CAD/CAM engineer in 
United Orthopedic Corporation.




