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	 The underwater thruster is an essential driving element for underwater platforms. Since 
underwater thrusters may fail because of external factors, a fault detection system is necessary 
for reliability and safety. Among the underwater thruster fault detection and diagnosis methods, 
a data-driven learning method, which does not require expertise or a physical model of the platform, 
is applied because a rule-based method lacks flexibility and a model-based method relies heavily 
on expertise. Although high-quality, large-capacity datasets are essential to implementing data-
driven fault detection systems, the amount of fault sensor data is relatively scarce because most 
underwater thrusters operate in a normal state. However, if the platform is operated in a fault state 
for a long time to acquire fault sensor data, performance degradation of the thruster or accidents 
may result. In this study, we investigated a fault detection system wherein a small number of 
vibration sensor datasets were used as inputs for a generative adversarial network (GAN), and 
new vibration sensor datasets were generated, extended, and applied to a long short-term memory 
neural network for fault detection in an underwater thruster. For the defects detected by the machine 
learning algorithm, the rotor imbalance due to a thruster blade fault or the entanglement of floating 
objects was analyzed. To collect the vibration sensor dataset of the thruster, a structure for an 
underwater experiment was designed, and a system with a stable power supply, thruster control, 
and the capability to acquire vibration data was developed. Vibration sensor data obtained from 
the experiment and those generated by the GAN were comparatively analyzed in terms of their 
vibration characteristics using the fast Fourier transform. After training the neural network with 
GAN-generated data, the fault detection system was validated using real data as prediction data.
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1.	 Introduction

	 Unmanned surface vehicles, autonomous underwater vehicles, and underwater manipulators 
operated in subsea environments use underwater thrusters or electric motors as actuators.(1–4) 
Faults may occur in the thrusters owing to external factors, which may adversely affect the mission 
performance.(5) To minimize the loss occurring in these thrusters, considerable research has been 
undertaken on fault detection and diagnosis systems related to motor-based underwater thrusters.(6) 
The fault diagnostic methods can be categorized into rule-based, model-based, and data-driven 
approaches.(7) The rule-based method operates by a sequential process of rules, and this method 
can be effectively used in a system that repeats a specific operation, as reported by Yang et al.(8) 
However, in the event of unexpected faults, taking effective response measures is difficult; 
maintenance also becomes more difficult with the addition of new rules.(8,9) Model-based methods 
have advantages over rule-based techniques, such as early detection of sudden or instantaneous 
small defects and increased process monitoring capabilities; however, they require knowledge of 
basic mathematical structures and dynamic process models.(9)

	 Data-driven methods can directly extract the features contained in data.(10) Compared with 
model-based methods, the fault detection and diagnostic system for these methods can be constructed 
with a simpler model design, and data-driven methods are widely employed in a variety of fields.
(10) Among the data-driven methods, deep learning is an efficient data-based solution that allows 
the acquisition of data features.(11) For reliable learning performance with the data-training-based 
deep learning method, high-quality data in large volumes is a prerequisite.(12) In recent data-driven 
fault detection and diagnosis studies, Ji et al. acquired data by implementing and operating the 
platform’s thruster blade breakage for the fault diagnosis of an autonomous underwater vehicle 
on the basis of deep learning,(13) and Chu et al. validated a fault detection system by referring to 
a vast dataset acquired in the past.(14)

	 However, if the platform is operated in a fault state for a long time to acquire data, performance 
degradation of the thruster, accidents, or platform loss may occur, or significant time and cost may 
be required to acquire a vast stored dataset from the past. In addition, most fault detection systems 
generally operate in a normal state owing to the low amount of fault data and large amount of 
normal data, which causes an imbalance problem.(15) To prevent this, the present study generated 
new datasets by using pre-existing ones under normal and fault conditions, acquired for a short 
time as input data of a generative adversarial network (GAN). A long short-term memory (LSTM) 
neural network was trained with the normal and fault datasets generated by the GAN, and fault 
detection was performed for an underwater thruster. The data generation function of the GAN—
an unsupervised learning task—was used to resolve the imbalance between fault data and normal 
data and reduce the platform operation time for data acquisition. The vibration features of the 
generated vibration data and those obtained through the experiments were compared and verified 
using the fast Fourier transform (FFT). The verified generated datasets were used to train the 
LSTM neural network used for time-series feature extraction. The LSTM neural network is a deep 
learning technique used to extract the features of time-series data. Zhang showed that it was more 
suitable than the convolutional neural network for railway track circuit fault detection and 
diagnosis.(16) The LSTM model has been applied for various types of fault detection such as fault 
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detection in wind turbines(17) and to assess the condition of bearings.(18) In the present study, the 
LSTM neural network trained with the generated data was compared with one trained with real 
data. The sensor data used for detecting the faults of an underwater thruster may include voltage, 
rotational speed, current, and vibration. Among them, since vibration sensor data in a rotating 
machine generates characteristic data depending on the operating conditions of the rotating 
equipment, it is possible to identify faults in the rotating machine by analyzing the vibration 
data.(19) Our study designed a fault detection system to obtain normal and fault vibration datasets 
of the underwater thruster. The fault detected through deep learning was rotor imbalance, which 
can occur because of blade damage of the thruster or the entanglement of floating objects.(20)

2.	 Materials and Methods

2.1	 GAN

	 GAN (Fig. 1) is a deep learning model that generates similar datasets from sample data through 
comparison between a generative model (G) and a discriminative model (D). Equation (1) shows 
the optimization equation of the GAN.(21)

	 ( ) ( ) ( )[ ] ( ) ( )( )( )~ ~min max ,  log log 1 
data zx p x z p zG D

V G D D x D G z= + −    	 (1)

Here, pdata refers to the real data distribution, and pz(z) is the prior distribution of input noise 
variable z from using the data distribution of generator pg to train against x. pz(z) is mapped to 
G(z; θg) in the data space. G(z; θg) is the generated data and a parameter of G, and D(x; θd) 
represents the probability of receiving both real data and generated data as inputs and sorting 
through them to obtain the real data. Using G(z; θg), through iterative training, the resulting 
value of log(1 − D(G(z))) is outputted as −∞, thus achieving the minimum value required to 
generate fake data, which is the same as that of the real data samples. Using parameter D(x; θd), 
through iterative training, V(D, G) = 0 is obtained as a result of calculating logD(x) and 
log(1 − D(G(z))); the maximum value is outputted and updated to discriminate between the real 
data and generated data. The network optimization equation of the GAN is based on the Nash 
equilibrium of the two-player game.

Fig. 1.	 (Color online) GAN diagram.
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2.2	 LSTM

	 In a recurrent neural network (RNN), the resulting value is outputted through the activation 
function at the node of the hidden layer and sent as the input for the subsequent calculation of the 
hidden layer, which allows the dynamic information to be modeled at various scales. However, 
when training with large-scale data, gradient disappearance or explosion occurs during the transition 
from the output layer to the input layer due to the limitation of “tanh” in the backpropagation 
process. LSTM resolves the problem of long-term dependences of the RNN by using the input, 
forget, and output gates. The role of gates is to discard or retain information of the input data that 
pass through the gate so that the data can be selectively adjusted. The gates use a sigmoid activation 
function, and a value between 0 and 1 is outputted depending on whether the input data can pass 
through the gate. The structure of the memory cell, which is the main component of the LSTM 
neural network, is shown in Fig. 2.(22)

	 In Fig. 2, ht and x(t) are the output and input of the current step, respectively, and ht-1 is the 
hidden output state of the previous step. σ is the sigmoid function, and tanh is the hyperbolic 
tangent function. Ct is a memory cell that stores information introduced from the previous step, 
and the output value from each gate is applied to Ct. There are three types of gates: forget gate, 
input gate, and output gate.

	 ( ) ( )( )1 xf hf t if t W x t W h b−= + +σ 	 (2)

	 ( ) ( )( )1 fix ih ti t W x t W h b−= + +σ 	 (3)

	 [ ]( )1( ) ,c t t cC T W h x bΦ −= ⋅ + 	 (4)

	 ( ) ( )( )1 oix oh to t W x t W h b−= + +σ 	 (5)

	 ( ) ( )( ) ( )  * h t s t o tΦ= 	 (6)

Fig. 2.	 (Color online) LSTM diagram.
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1 * *t t t t tC f C i C−= +  	 (7)

In the above equations, Wix, Wfh, and bi represent the input weight matrix, hidden weight matrix, 
and bias vector, respectively. σ, Φ, and * denote the sigmoid function, tanh function, and the product 
of two vectors by element, respectively. The forget gate decides which unnecessary information 
should be forgotten by considering the current input and previous output. The formula for calculating 
the forget gate is given by Eq. (2). The input gate determines how much information of the current 
input data is stored. The calculation formula for the input gate is given by Eq. (3). Equation (4) 
represents the tanh layer, which creates a vector of new candidate values to be added to the cell 
state. The output gate determines the extent to which the final cell state value is tuned. The formula 
for calculating the output gate is given by Eq. (5). Equation (6) is the formula of the cell state, and 
the output of each gate is updated in the cell state. The newly obtained cell state (Ct) is transferred 
to the next sequence.

2.3	 Confusion matrix

	 The confusion matrix is used to evaluate the performance of the classification model. The rows 
of the matrix represent the actual labels of the classification types, and the columns represent the 
results predicted by the classification model. Therefore, the diagonal elements indicate correct 
classification results, and other values indicate incorrect classification results.(23) The confusion 
matrix is shown in Fig. 3.
	 Based on the confusion matrix, the following definitions for classification model performance 
measurement can be used.

	  TP TNAccuracy
TP FN FP TN

+
=

+ + +
	 (8)

	  TPPrecision
TP FP

=
+

	 (9)

Fig. 3.	 (Color online) Confusion matrix.
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	   TPRecall
TP FN

=
+

	 (10)

	
2 Precision RecallF score

Precision Recall
× ×

− =
+

	 (11)

	 In Eqs. (8)–(11), accuracy is the fraction of all prediction results that match the actual label 
results, precision is the ratio of correct matching of the actual label among the results predicted 
by the model as positive, and recall is the ratio at which the model predicts that the actual label is 
defined as positive. F-score (F_1 score) is the harmonic average of precision and recall and is used 
to evaluate the performance of the classification model.(24)

2.4	 Composition of fault detection

	 The system proposed in this study was constructed to acquire sample data for the fault detection 
of underwater thrusters based on data training. As shown in Fig. 4, the system configuration 
includes the operator’s computer, fault detection system, underwater thruster platform, and vibration 
sensor. The fault detection system controls the underwater thruster and simultaneously collects 
the vibration sensor data and transmits it to the operator’s computer. The received vibration sensor 
data was saved to the created C# program.
	 The configuration of the fabricated fault detection system is shown in Fig. 5, where the main 
power supply, control board, and AC–DC converter are placed in the system.
	 PSoC 5LP micro controller units were used as the main controller. Three PSoC 5LPs were 
installed; the first PSoC communicated with the operator’s computer to receive the thruster control 
signal and transmit the acquired vibration sensor data, the second controlled the thruster according 
to the thruster control signal, and the third received the vibration data from the vibration sensor. 
The underwater thruster was installed in an indoor water tank, as shown in Fig. 6. The vibration 
sensor was attached to the thruster body, and tests were performed at a depth of 5 m.

Fig. 4.	 (Color online) Fault detection platform.
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2.5	 Fault detection algorithm

	 According to Kemp et al.,(25) there are various types of faults related to underwater thrusters, 
such as software errors, entanglement, and loss of propeller blades. In this study, among the types 
of faults, those related to damage to the thruster blade due to external factors were selected for 
analysis. The vibration data were used as an indicator for diagnosing the thruster condition; 
moreover, the vibration data could characterize the features of the rotor imbalance fault, such as 
wing damage or floating object entanglement. Figure 7 shows an overview of the algorithm for 
fault detection.
	 A GAN is used to increase the amount of data acquired in a short time using a fault detection 
platform. Random noise is used as input data for the generator network to acquire the extended 

Fig. 5.	 (Color online) Fault detection system.

Fig. 6.	 (Color online) Underwater thruster.
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datasets. After labeling the generated datasets as “normal” and “fault,” they are used for training 
with a classification LSTM neural network, with the loss function set to “Binary cross entropy”, 
which can perform binary classification. The resulting value of the neural network is outputted 
as any value of the sigmoid function between 0 and 1. Normal and fault data obtained through the 
experiments were used in the datasets for evaluation. This method not only increases the number 
of training datasets but also resolves the problem of data imbalance.

2.6	 Data generation and LSTM network

	 After acquiring the normal and fault datasets using the fault detection system, extended sample 
datasets were generated using the GAN. Normal and fault data were extended using the method 
shown in Fig. 8.
	 In this study, a generation model was constructed using a simple dense layer activated by the 
tanh function for the generator. The discriminator was composed of convolutional layers, and the 
Rectified Linear Unit (ReLU) activation function was set for the entire network. The dropout rate 
was set to 25%, and the Adam optimization algorithm was used for optimization. The discrete 
Fourier transform (DFT) was used to compare and analyze the generated data and obtain the 
frequency and amplitude of the vibration data. The change in the center of mass due to the damage 
of the thruster had a proportional relationship with the rotation speed, and the amplitude of vibration 
was increased at the same frequency. The DFT is expressed as follows:

Fig. 7.	 (Color online) Fault detection algorithm.
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	 The validated extended datasets were used as training data for the LSTM neural network. 
According to the Nyquist–Shannon theorem, the complete fmax can be obtained by measurements 
at intervals of 1/2fmax, assuming that the maximum frequency component of the analog signal to 
be measured is fmax. That is, at a specific sampling rate ( fs), the condition fs = 2fmax should be 
satisfied. In this study, approximately 20 Hz was sufficient to detect vibration data of approximately 
9.2 Hz based on the Nyquist–Shannon theorem, but data at 100 Hz were used as training data to 
detect the features such as an accurate vibration distribution in addition to the shaft rotation 
frequency. The loss function used was “Binary cross entropy,” and the activation function was set 
to “sigmoid”.

3.	 Results and Discussion

3.1	 Data acquisition experiment according to the underwater thruster condition

	 A data acquisition experiment based on the underwater thruster condition was conducted in a 
water tank. Images of the underwater experiment in the water tank are shown in Fig. 9.
	 For the vibration sensor data used in this study, the data of two conditions of the blade, which 
are a normal condition and a fault condition with the loss of blade thrust, were collected at a rotation 
speed of 550 rpm. The sampling frequency of the data for each condition was set to 100 Hz.

Fig. 8.	 (Color online) Extended dataset generation.



3222	 Sensors and Materials, Vol. 34, No. 8 (2022)

3.2	 Comparative validation of GAN generation data

	 For the GAN input data, we used 1000 data points each for normal and fault vibration sensor 
data, which were acquired by the data acquisition experiment using the underwater thruster. Using 
the GAN, vibration data (40000 points each) in the normal and fault conditions were generated. 
The generated data were comparatively analyzed using real data acquired through the experiment 
under the same conditions as those utilized for collecting the GAN input data. The DCT was 
performed with the vibration data, and the FFT was used. The results of the FFT analysis of 10000 
data points are shown in Fig. 10.
	 According to the research by Betta et al.,(19) vibration occurs at the shaft rotation frequency 
for a rotating machine under normal conditions, but when the defect of rotor imbalance occurs, 
high-intensity radial vibration occurs simultaneously. In the graph of Fig. 10(a), a vibration was 
found at 9.17 Hz using FFT of the real data under the normal condition, and vibration occurred at 
9.2 Hz in the extended datasets generated through GAN. The value of 9.17 Hz can be converted 
to 550 rpm and be used as an estimate of the shaft rotation frequency component. From Fig. 10(b), 
as a result of the FFT of the real data under the damaged condition of the thruster, we found that 
the vibration magnitude was approximately four times higher than that of the normal condition at 
9.47 Hz; the rotational speed also increased. The value of 9.47 Hz can be converted to 568 rpm, 
an increase of approximately 10 rpm from that of the normal condition. Table 1 outlines the results 
of the comparative verification between the real data and extended data using the FFT. When the 
vibration characteristics were analyzed on the basis of 20000 real data points, we found that the 
shaft rotation frequency was 9.47 Hz, the magnitude of the vibration was 23.27 × 10−2 g, and the 
vibration characteristics of the extended data were 9.43 Hz and 25.05 × 10−2 g, which were similar 
to those for the real data. In the case of more than 30000 vibration data points, the magnitude of 
the vibration tended to be dispersed around the shaft rotation frequency and decreased to 
11.18 × 10−2 g; however, it can be seen that the vibration characteristics of the extended data were 
similar to those of the real data.

Fig. 9.	 (Color online) Underwater experiment.
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3.3	 Results of fault detection using LSTM

	 For the training data, the normal and fault data that were generated and extended were divided 
into groups of 100, making a total of 800 datasets. For data labeling, “0” indicated normal and “1” 
indicated damaged. The training sets and test sets were divided in a ratio of 7.5:2.5. The experimental 
datasets measured at different hours were used as the prediction data to perform fault detection. 
A total of 5000 experimental data points were used as LSTM prediction data, and the results of 
the prediction are shown in Fig. 11. 
	 The plot in Fig. 11(a) shows the cases wherein, when the real data of the normal condition were 
predicted by the LSTM neural network, the normal condition was predicted. The plot in Fig. 11(b) 
shows the cases wherein, when the real data of the fault condition were predicted by the LSTM 
neural network, the fault condition was derived as the prediction result. The confusion matrix for 
the performance evaluation of the LSTM-based fault detection model is shown in Fig. 12.
	 According to the confusion matrix for the performance evaluation of the classification model 
with a test set consisting of 100 normal datasets and 100 fault datasets, all of the normal datasets 
were predicted to be normal. In the fault dataset, 97 were predicted to be faulty, and 3 were predicted 
to be normal. The precision, recall, and F-score results obtained from the confusion matrix are 
shown in Table 2.
	 The results demonstrated that when fault data (for which there is fewer data available than for 
normal data) are used as input data for the GAN to obtain extended datasets, the extended datasets 
can be utilized as training data for deep-learning-based fault detection/diagnosis systems such as 
LSTM.

Fig. 10.	 (Color online) (a) Results of FFT for real and generation normal data and (b) results of FFT for real and 
generation damaged data.

(a) (b)

Table 1
Results of FFT of real and generated data.
Number of data (EA) Real data (Hz and g) Generation data (Hz and g)
10000 9.47 20.48 × 10−2 9.5 21.94 × 10−2

20000 9.38 23.27 × 10−2 9.43 25.05 × 10−2

30000 9.39 11.18 × 10−2 9.35 10.68 × 10−2

40000 9.38 13.00 × 10−2 9.35 12.84 × 10−2
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4.	 Conclusion

	 In this study, we used a small number of vibration sensor datasets of an underwater thruster, 
measured in a short time, as inputs for a GAN to generate and extend new vibration datasets. We 
also investigated a fault detection system for an underwater thruster using an LSTM neural network. 
To collect the vibration sensor datasets of the thruster, we designed a structure for an underwater 
experiment, and we constructed a fault detection system with a stable power supply, thruster 

Fig. 11.	 (Color online) (a) LSTM prediction result of normal and (b) LSTM prediction result of fault.

Fig. 12.	 (Color online) Confusion matrix of performance evaluation.

(a) (b)

Table 2
Classification model performance evaluation results.
Precision (%) 100
Recall (%) 97
F-score (%) 98.48
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control, and the capability to acquire vibration data. For the vibration sensor data acquired through 
the underwater experiment and those generated and extended by the GAN, their vibration 
characteristics were compared and validated using the FFT. As a result, the vibration characteristics 
of the generated and extended data were similar to those of real data. To verify that the extended 
datasets could be used as training data, an LSTM neural network was constructed. After training 
it with extended datasets, excellent performance was confirmed for predicting the condition of 
the underwater thruster. These results indicate that the fault data of underwater thrusters measured 
in a short time can be extended to a GAN and used for data-based fault detection systems.
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