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	 Maintaining a positive interaction is the key to a healthy and efficient meeting. Aiming to 
improve the quality of online meetings, we present an end-to-end neural-network-based system, 
named MeetingPipe, which is capable of quantitative microbehavior detection (smiling, nodding, 
and speaking) from recorded meeting videos. For smile detection, we build a neural network 
framework that consists of an 18-layer residual network for feature representation, and a self-
attention layer to explore the correlation between each receptive field. To perform nodding 
detection, we obtain head rotation data as the key nodding feature. Then we use a gated recurrent 
unit followed by a squeeze-and-excitation mechanism to capture the temporal information of 
nodding patterns from head pitch angles. In addition, we utilize TalkNet, an active speaker 
detection model, which can effectively recognize active speakers from videos. Experiments 
demonstrate that with K-fold cross validation, the F1 scores of the smile, nodding, and speaking 
detection are 97.34, 81.26, and 94.90%, respectively. The processing can be accelerated with 
multiple GPUs due to the multithread design. The code is available at https://github.com/
humanophilic/MeetingPipe.

1.	 Introduction

	 As a mainstream communication medium, online meetings play a key role in our working 
lives. It is estimated that 11 million meetings are held in the United States every day.(1) They take 
up an inordinate amount of working time, especially during the current COVID-19 pandemic. 
As the number of meetings increases, the quality and value of meetings have a direct impact on 
working efficiency. According to the publications in social science and human–computer 
interaction,(2) role (e.g., age and appearance),(3) verbal information (e.g., speech content and  
context),(4,5) and nonverbal information (e.g., body gesture and facial expression) can have a 
considerable influence on the behaviors of meeting participants.(6–9) To conclude, maintaining a 
positive interaction is the key to a healthy and efficient meeting. However, in online meetings, 
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people are less likely to be aware of the emotional changes of others as well as their own 
behaviors than in face-to-face meetings due to the noncontact interaction.
	 Aiming to create a harmonious environment for discussion and improve the quality of online 
meetings, we present an end-to-end neural-network-based system, named MeetingPipe, which 
can quantitatively perform microbehavior detection (smiling, nodding, and speaking) from 
recorded meeting videos. In this work, we select the above three behavior patterns since they are 
the most frequently seen during meetings and are independent of other factors (e.g., although 
facial direction is considered as a significant indicator, it varies due to a series of factors such as 
the position of cameras, the number of displays, etc., and it is difficult to tell whether one is 
focusing on the meeting content according to his/her facial direction in a visual scene). 
MeetingPipe is currently capable of microbehavior detection, which makes meeting participants 
aware of their natural behaviors as well as those of others during online meetings. To realize 
meeting evaluation and improvement, we plan to implement an evaluation function that scores a 
meeting on the basis of detected data and a coaching function that provides users with objective 
analysis and suggestions in future work. As a result, meeting participants can notice their 
problems (e.g., fewer smiling, nodding, and speaking) during meetings and are expected to 
behave more actively according to the given analysis and suggestions. In other words, the current 
system can be considered as the first step of meeting evaluation. Note that MeetingPipe is 
designed for post-meeting reviews. It takes recorded meeting videos as the input and cannot be 
applied as an extension program to any online meeting applications.
	 The overall pipeline is illustrated in Fig. 1. Since the three core detection models are designed 
to process single-face dynamics in a video stream, the faces of each meeting participant will be 
cropped and tracked at the frontend. Then the following detection modules will detect and 
quantify smiling, nodding, and speaking patterns from the obtained face videos. For some cases 
in which meeting participants wear masks, although faces can be normally detected, the mouth, 
as the most significant feature of smiling and speaking, will be hidden by masks. Therefore, the 
smile and speaking model will suffer from that and cannot give a satisfactory prediction.
	 Considering the operating time in practical use, we focus on the floating-point operations per 
second (FLOPs) and the time complexity when designing the neural network structure. For 
example, we use techniques such as depthwise convolution and make each performance-based 
module shallow to increase the speed. In addition, we design the process schedule to be parallel 

Fig. 1.	 (Color online) Pipeline of MeetingPipe.
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so that the system can deal with multiple faces simultaneously using multiple GPUs, which 
greatly improves the overall efficiency.
	 To the best of our knowledge, MeetingPipe is the first open-source tool capable of quantitative 
microbehavior detection (smiling, nodding, and speaking) for online meetings. Compared with 
existing systems, it has the following advantages:
(1)	Platform compatibility
	 Unlike most existing meeting analysis systems that request audio-visual data from specific 
online meeting platforms, such as Zoom, MeetingPipe has no such restriction, which enables 
users to choose any platform flexibly as long as meeting videos can be recorded.
(2)	Multimodal
	 In addition to audio data, we also use video streams to explore visual information. By 
quantifying smiling, nodding, and speaking, we can evaluate meetings from facial expressions, 
body movements, and speech using a multimodal method, which is expected to process more 
information than a single-modal method.
(3)	Quantitative detection
	 MeetingPipe performs quantitative detection of the target indicators. In other words, the 
specific number of the target microbehaviors will be recorded. It is considered that quantified 
values are clearer and more objective than qualitative measurements.
	 The rest of the paper is organized as follows. In Sect. 2, we discuss related work. In Sect. 3, 
we give a detailed description of our system. In Sect. 4, we report our experimental results. 
Finally, we give a conclusion in Sect. 5.

2.	 Related Work

	 There have been studies related to meeting-based group discussions, where meeting 
summarization, the generation of a summary from meeting transcriptions, is a task of great 
interest in the natural language processing (NLP) field. Some excellent models have been 
proposed for summarizing online/offline meetings from a textual perspective. For example, 
HMNet proposed by Zhu et al. can generate effective meeting summaries from transcriptions.(10) 
However, there have been much fewer studies on meeting evaluation. Despite the fact that text is 
a significant carrier of meeting information, we consider that the evaluation feedback of online 
meetings also benefits a lot from audio-visual information.
	 Samrose proposed a fully automated online collaboration platform, CoCo, which analyzes 
audio-visual data to measure various meeting parameters including participation, attitude, and 
shared smiles.(11) However, as an online meeting platform, it requests full access to the audio-
visual stream from the user side while a meeting is in progress, and an evaluation report about 
the meeting parameters (participation, attitude, etc.) can be generated afterwards based on the 
obtained audio-visual data. In other words, the system cannot be applied to meeting videos 
recorded from other online meeting platforms.
	 On the basis of the cognitive factor that nodding and speaking correspond to the up-and-
down rotation of the head and the actions of lips, respectively, Watanabe et al. proposed a single-
modal system, DisCaaS, for online meeting evaluation that can quantitatively detect nodding 
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and speaking patterns from recorded meeting videos.(2) With the landmark information output 
by OpenFace,(12) head pitch data and the distance between landmark points on the lips are taken 
as nodding and speaking features, respectively. Then a random forest classifier is used for 
prediction. It is theoretically possible to detect nodding and speaking patterns from landmark 
points. However, the continuous bias caused by the unavoidable error of 3D measurement 
technology strongly interferes with accurate classification, making the system difficult to be 
applied in practical use.
	 In addition, several meeting support applications, such as JamRoll and ailead,(13,14) have been 
developed so far. By collaborating with mainstream online meeting platforms, these applications 
are given full permissions to access audio-visual sources from the user side of online meeting 
platform. Compared with CoCo, they are not proposed as online meeting applications, but 
extension software capable of meeting evaluation that supports existing online meeting 
applications. Most of them are implemented with practical functions such as active speaker 
detection (ASD), keyword summarization, etc. However, these meeting support applications 
cannot be applied to scenarios where some recorded meeting videos need reviews. They strongly 
rely on the real-time meeting data from online meeting applications. As a summary, the 
implemented functions of the above meeting evaluation tools are organized in Table 1.

3.	 MeetingPipe

	 MeetingPipe is designed as an end-to-end pipeline that takes recorded meeting videos as the 
input and detects whether and when a person is smiling, nodding, and speaking at the frame 
level. As illustrated in Fig. 1, it consists of a face tracking module at the frontend, which tracks 
and crops all the detected faces from raw videos, and three modules responsible for smiling, 
nodding, and speaking detection from the tracked faces, respectively. Since a single GPU can 
deal with one face in a process, it is possible to concurrently process multiple faces with multiple 
GPUs by a multiprocessing method. In other words, the number of meeting participants and the 
number of GPUs used have a considerable influence on the operation time.

3.1	 Face tracking

	 Face detection is the task of detecting faces and distinguishing them from other objects in a 
visual scene. Based on accurate face detection, face tracking aims to track all the detected faces 
in a video stream so that each face dynamic can be captured. We perform face tracking at the 

Table 1
Comparison of meeting evaluation tools.

Tool Real-time
Platform 

compatibility
Transcription 

(keyword)
Speaker 
detection

Emotion 
analysis

Facial 
expression

Body 
movement

Coaching 
(scoring)

JamRoll(16) √ √ √ √
ailead(17) √ √
CoCo(5) √ √ √ √ √
DisCaaS(6) √ √ √
MeetingPipe √ √ √ √
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frontend since the following three detection models are designed to process single-face dynamics 
in a video stream. Then we use the Intersection over Union (IoU), also known as the Jaccard 
index,(15) which is a statistic used for gauging the similarity of sample sets, to measure the 
overlapping area between individual faces. For two faces from adjacent frames, it is expected 
that same faces (overlapping area AP ≥ A) can be distinguished from different faces (overlapping 
area AN < A) with a threshold A. As a result, face videos of each participant can be obtained.
	 MeetingPipe takes recorded meeting videos of multiple people as the input and performs face 
tracking on each participant. For a meeting of m participants, m videos of individual faces are 
expected to be generated. On the other hand, the system performance extremely relies on the 
face detection results. Considering head position variations during online meetings, we selected 
to apply Single Shot Scale-Invariant Face Detector (S3FD) to our system owing to its 
effectiveness.(16) The convolutional neural network (CNN)-based architecture makes S3FD 
robust to object scale and rotation so that nonfrontal faces can also be detected accurately. 
However, for input videos of high resolution or too many participants, face tracking will be more 
time-consuming.

3.2	 Smile detection

	 Smile, which directly reveals a positive emotional state, is the most common detection target 
in facial expression recognition tasks. With the rapid development of CNN and Transformer,(17) 
facial expression recognition is no longer a challenging problem. As the most frequently seen 
facial expressions during group discussions, we selected smile as one of the detection indicators 
in our system.
	 Smile detection can be considered as a subtask of facial expression recognition. The Haar-
feature-based cascade classifier is an effective object detection method based on a machine 
learning approach,(18) which is a common method for smile detection tasks. However, the Haar 
cascade classifier is trained to only be sensitive to smile in frontal faces and cannot cope with 
complex situations that arise during practical use. In addition, despite a series of excellent neural 
network models proposed for facial expression recognition capable of smile detection, most of 
them were built with traditional CNN architectures. We consider that the smile detection 
performance can be improved by employing the latest technologies such as the attention 
mechanism.
	 In this paper, we propose a novel smile detection model as illustrated in Fig. 2(a). It takes 
single-face images as the input and detects smile patterns frame by frame. It starts with an 
18-layer residual network (ResNet) for feature representation,(19) followed by a 1D convolution 
(Conv1D) layer to reduce the feature dimension. As we obtain a sequence of feature embeddings, 
inspired by the Vision Transformer (ViT),(20) a randomly initialized class token is placed at the 
beginning, which is expected to collect local and global information from the other feature 
embeddings through a multi-head self-attention layer. Finally, using a fully connected layer, we 
can make a binary classification of smile or nonsmile pattern.
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3.3	 Nodding detection

	 Nodding detection is a downstream task of head pose estimation (HPE) that aims to recognize 
nodding activity in visual scenes. Since nodding is a gesture in which the head is tilted in 
alternating up and down arcs along the sagittal plane, among yaw, pitch, and roll, pitch is 
considered as the main evidence of nodding. As a consequence, we recognize nodding patterns 
from head pitch data. Specifically, we used 6DRepNet,(21) which is a robust HPE model proposed 
by Hempel et al., to learn the full range of head poses. Then we built a neural-network-based 
framework for nodding detection, which is expected to explore temporal information from the 
obtained head pitch data.
	 Figure 2(b) illustrates the structure of our nodding detection module. It takes single-face 
videos as the input, from which the time series of head pitch data can be generated by 6DRepNet. 
The backbone part is designed as a sequence-to-one architecture, which takes head pitch data as 
the input and outputs a nodding prediction. In detail, a two-layer gated recurrent unit (GRU) is 
used to explore the temporal information of nodding,(22) followed by a squeeze-and-excitation 
(SE) block that adaptively recalibrates channelwise feature responses by explicitly modeling 
interdependences between channels.(23) With a fully connected layer, we seek to distinguish 
nodding and non-nodding behaviors.

3.4	 Speaking detection

	 Generally, whether a human is speaking is judged on the basis of the following: (1) Does 
audio exist? (2) Does the mouth of the target person move? (3) Does the mouth movement 
dynamically match the audio content? Therefore, a multimodal method is commonly used to 
detect speaking activities. In our system, we use TalkNet, proposed by Tao et al.,(24) to explore 
the audio-visual relationship and perform effective speaking detection.

4.	 Experiments and Results

4.1	 Dataset

	 To the best of our knowledge, there are few datasets related to group discussion (especially 
for nodding recognition), which motivates us to build a new meeting dataset. According to past 

(a) (b)

Fig. 2.	 (Color online) Structure of (a) smile detection module and (b) nodding detection module.
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studies,(2,25,26) we have conducted research on meeting evaluation since 2019. The meeting 
dataset is collected and labeled with consent of ethics review. The annotation is especially a 
time-consuming work since subtle examples of the target behaviors are difficult to notice from 
the recorded meeting videos. Our dataset contains video data collected from online and offline 
meetings. Online meeting videos are recorded from mainstream online meeting applications 
(e.g., Google Meet, Zoom, etc.), and offline meeting videos are obtained by the great work of 
Soneda et al.(25,26) They created a corpus on human-to-human multimodal communication in 
group discussions by designing offline meetings where participants were equipped with multiple 
sensors to detect their microbehavior, which further expands our meeting dataset. In detail, we 
have currently collected 295 videos of 40 participants with a total video length of 21.7 h, out of 
which 190 videos of 13.2 h were labeled. For the above three detection models, our meeting 
dataset contains 7.92 h of smile data, 4.19 h of nodding data, and 12.9 h of speaking data. Note 
that all videos are 25 frames per second (fps).
	 In addition to our meeting dataset, we apply some other existing datasets in the experiments. 
The Denver Intensity of Spontaneous Facial Action (DISFA) dataset is widely used in facial 
expression recognition tasks.(27) Owing to the high number of smiles, DISFA is applied to the 
training process of our smile model, and the trained smile model is tested on our meeting 
dataset. Since there are few datasets related to nodding recognition, we train and test the nodding 
model on our dataset. Given the pretrained TalkNet model, which has been trained on the 
benchmark ASD dataset AVA-ActiveSpeaker,(28) we test the performance on our dataset.

4.2	 Implementation details

	 We construct MeetingPipe fully using the PyTorch library. For the smile detection model, the 
input face images are reshaped to (224, 224). The distance between the prediction and ground 
truth is computed using the binary cross-entropy loss. The learning process was driven by the 
Adam optimizer with a learning rate of 10−4. For the nodding detection model, the obtained head 
pitch data are split into 20 frames (800 ms) with an overlap of 50%, which is experimented to be 
the optimal window length, and we use the binary cross-entropy loss and the Adam optimizer 
for training. For the speaking detection model, the input data consist of video data and Mel-
frequency cepstral coefficient (MFCC) image data. The video resolution is reshaped to 
224 × 224 and the duration is 25 frames. The dimension of MFCC is 13 and the audio source 
corresponds to the same interval on the timeline.
	 MeetingPipe was tested on the Ubuntu 20.04 operating system. All experiments are 
conducted on two NVIDIA RTX A6000 GPUs and one 36-core i9-10980XE CPU.

4.3	 Experimental results

	 As mentioned above, after the training process, we test the three models on their test datasets. 
The details of the test datasets are summarized in Table 2.
	 Note that all the test data are sampled from our meeting dataset described above. The 
experimental results obtained using K-fold cross validation (K = 5) are reported in Table 3.
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	 We observe that the smile and speaking models achieve 97.34 and 94.9% F1 scores on their 
test dataset, respectively. The results outperform the nodding model by over 10%. To explore the 
reasons, we visualize the HPE results and find that there exists a slight and continuous bias on 
head rotation predictions even for non-nodding patterns. This indicates that the measured head 
movement curves are always oscillatory. In other words, it is difficult to distinguish a slight 
nodding pattern from a non-nodding pattern. It greatly limits the nodding recognition 
performance since in most cases people tend to nod slightly. In addition, compared with another 
two models, the nodding model was only trained and tested on our meeting dataset. Thus, a 
small data volume is also considered as one of the causes. For comparison, we test the meeting 
evaluation system DisCaaS on the same dataset. From the results, we can observe that 
MeetingPipe outperforms DisCaaS by about 20% in all tests.
	 We further perform ablation experiments on nodding window length. To study the influence 
between different nodding window lengths, we experiment with different window lengths of 5, 
10, 20, and 50 that amounts to 0.2, 0.4, 0.8, and 2 s, respectively, and the results are reported in 
Table 4.
	 It can be concluded that a short window length, e.g., 5, is insufficient to fully capture the 
temporal feature of nodding activity. As the window length increases, the F1 score improves 
from 62.32 to 81.26%. On the other hand, it can also be concluded from the table that a very large 
window length has a negative effect on nodding detection.
	 Then we test MeetingPipe on a 304.76 s meeting video involving four participants. To test 
videos with different resolutions, we resize the raw resolution from 1920 × 1080 to 1280 × 720. 
The detailed operating time is shown in Table 5.
	 From the above table, we observe that both video resolution and GPU number affect operating 
time considerably. It can be concluded that (1) low-resolution videos consume relatively fewer 
computational resources and take less time to process. (2) It is more efficient to use multiple 
GPUs. Therefore, it is suggested to record meeting videos with a relatively low resolution (e.g., 
1280 × 720) and use more GPUs. Note that the detection performance cannot be guaranteed on 
excessively blurred videos. For a more visual demonstration, the prediction results of smiling, 
nodding, and speaking for one participant on the above 5 min video are shown in Fig. 3.

Table 2
Details of the test datasets.

Module Data volume Data shapePositive Negative
Smiling 28512 28942 (224, 224, 1)
Nodding 3771 3816 (20, 1)
Speaking 9288 9342 V:(25, 224, 224, 3) A:(100, 13, 1)

Table 3
Test results of each detection module.

Module MeetingPipe DisCaaS(6)

Accuracy Precision Recall F1-score F1-score
Smiling 0.9734 0.9745 0.9723 0.9734 N/A
Nodding 0.8158 0.8523 0.7742 0.8126 0.6400
Speaking 0.9472 0.9852 0.9153 0.9490 0.7200
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Table 4
Performance for different nodding window lengths.
Window length (frames) F1 score
5 0.6232

10 0.7176
20 0.8126
50 0.7658

Table 5
Operating time on test videos.

Module
Operating time (s)

Resolution 1080p 720p
GPU number 1 2 1 2

Face tracking 370.85 364.96 163.42 169.98
Behavior detection 741.34 565.60 532.18 445.65
Total 1112.19 930.56 695.6 615.63

(a)

(b)

(c)

Fig. 3.	 (Color online) Prediction results of (a) smiling, (b) nodding, and (c) speaking.
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5.	 Conclusions

	 In this work, we built an end-to-end quantitative evaluation system named MeetingPipe for 
online meetings. It can effectively detect and quantify three common microbehavior indicators, 
namely, smiling, nodding, and speaking, during online meetings. In addition, we built and 
labeled our meeting dataset manually. It was concluded from our experimental results that 
MeetingPipe can achieve satisfactory performance for practical use. As future work, we plan to 
implement additional functions such as semantic analysis and keyword extraction for more 
comprehensive meeting analysis.
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