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	 Gesture input using the acceleration sensor of a smartphone is a promising new input method. 
The target input gestures in this paper are movements of a user’s hand holding a smartphone. 
However, if parameter tuning is performed to improve the recognition accuracy of input gestures 
while stationary, erroneous detection at the start of walking will increase. On the other hand, if 
parameter tuning is performed to reduce false detection at the start of walking, the recognition 
accuracy of input gestures while stationary is lowered. Thus, there is a trade-off problem. In this 
paper, we propose a gesture recognition method to reduce erroneous recognition by combining a 
gesture detection method that uses similarity based on dynamic time warping (DTW) (TD) and 
a gesture classification method that also includes walking data as a candidate (CD). We 
conducted evaluation experiments with nine subjects. As a result, we confirmed that false 
detection at the start of walking can be eliminated using the proposed method. By verification 
using t-test, we confirmed that the F1-score of the proposed method was significantly higher 
than that of CD.

1.	 Introduction

	 In recent years, computers such as smartphones have become smaller, and their convenience 
has improved because they can be easily carried and worn. Various smartphone operation 
methods are being researched, such as voice operation, eye tracking operation, and gesture 
operation. In this paper, for gesture operation, we focus on gesture input with the smartphone 
held in the user’s hand. Gesture input using the acceleration sensor of a smartphone is a 
promising new input method without the need to look at the screen. Although gesture input does 
not require users to look at the screen, it is desirable for the user to be stationary during input to 
avoid input while walking.
	 However, when the input is completed and the user starts walking, many false detections 
occur due to the large noise generated by walking. To prevent this false detection, parameters 
such as the acceleration value threshold for gesture detection can be adjusted so that a certain 
amount of acceleration can be ignored. However, this parameter adjustment causes many gesture 
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input failures. Therefore, improving the recognition accuracy of gesture input and reducing false 
detections have a trade-off relationship.
	 In gesture input, it is necessary to determine which gesture was performed and when on the 
basis of the acceleration measured by the smartphone. In other words, it is necessary to first 
solve the decision problem of gesture existence, and then, if a gesture has been made, solve the 
classification problem of which gesture it is. Therefore, in this paper, gesture recognition is 
divided into the following two problems, as overviewed in Fig. 1.
• Gesture detection: detects when a gesture is performed
• Gesture classification: classifies which gesture is performed
	 In gesture input, the following three types of error are important.
• False positive (for gesture detection): a detected gesture is output when no gesture is performed
• False negative (for gesture detection): no result is output when a gesture is performed
• False classification (for gesture classification): an incorrect gesture is output
	 Generally, in gesture detection, the existence of a gesture is determined by setting a threshold 
value and detecting whether the acceleration value exceeds the threshold.(1,2) Setting a threshold 
to make gestures easier to detect reduces false negatives but increases false positives due to 
noise. On the other hand, setting a threshold to make gestures harder to detect reduces false 
positives but increases false negatives. This results in the above-mentioned trade-off relationship 
between recognition accuracy and false detection.
	 In gesture classification, chronological acceleration data of candidate gestures assumed as 
inputs is measured in advance.(3,4) Then, by various classification methods, the gesture most 
similar to the input acceleration data is output as the solution. When there are candidate gestures 
that behave similarly to other candidates, they tend to be misclassified. Furthermore, if a part of 
the walking noise resembles a candidate gesture, false positives will occur.
	 In this paper, we propose a method to detect and classify gestures at the same time by adding 
typical walking noise to candidate gestures. In the proposed method, the threshold value of the 
acceleration, which has often been used in previous studies, is not used in the gesture detection. 
Instead, the proposed method detects and classifies gestures when they are significantly similar 
to a single candidate gesture. A threshold is set in this “significantly” part. If the input data is 
classified as walking noise, it means that no gesture is detected.

Fig. 1.	 (Color online) Overview of gesture recognition.
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2.	 Related Works

2.1	 Walking detection

	 False positives can be eliminated by setting the smartphone so that it cannot be operated 
while walking. However, most of the previous studies on walking detection did not require 
immediacy, and it is difficult to detect walking at the moment a user starts walking. Therefore, 
false positives occur immediately after the start of walking. There is also known to be an error of 
about 5 s in movement detection using GPS.(5)

2.2	 Gesture detection by accelerometer

	 Acceleration thresholds are used for anomaly detection in automotive airbags and railroad 
tracks. Impact can be detected by setting a threshold value for continuously input acceleration 
values and the velocity can be calculated from these values.(6) Similarly, in gesture detection, an 
input gesture is detected by setting a threshold value for the acceleration values acquired from an 
accelerometer.(1) There is a trade-off between false positives and false negatives, and it is 
difficult to reduce both at the same time. The F-measure can be used as an index to evaluate the 
recognition accuracy in such a case, and the F1-score has been used in many studies.(7) In this 
paper, we both output the correct gesture for the gesture-performed data and ignore the walking 
data, and the accuracy is evaluated using the F1-score.

2.3	 Gesture classification by accelerometer

	 When chronological acceleration data is given, the basic method of gesture recognition for 
finding the correct gesture from many candidate gestures is to measure the chronological 
acceleration data of the candidate gestures assumed to be input in advance and to find the most 
similar candidate gesture.(2–4)

	 In such gesture classification, the similarity calculation of chronological data is performed. 
The typical algorithms are angular metric for shape similarity (AMSS),(8) multi-dimensional 
time-series approximation with the use of local features at thinned-out keypoints (A-LTK),(9) 
hidden Markov model (HMM),(10,11) and dynamic time warping (DTW).(2,12,13) Even if the same 
gesture is performed several times, the gesture speed will change each time. Since the number of 
sample values of input data and the acceleration value vary, it is difficult to obtain the degree of 
similarity with premeasured data. Regarding this problem, DTW can be used to calculate the 
similarity degree by eliminating the difference in the number of samples and acceleration values 
by expanding and contracting the time for two chronological data. In this paper, DTW is used to 
calculate the similarity degree between the premeasured data and the input data.

2.4	 Comprehensive method of gesture recognition

	 Izuta et al. used a DTW similarity calculation for gesture detection.(3) They found that a 
gesture can be recognized without waiting for its completion by repeatedly comparing the 



3004	 Sensors and Materials, Vol. 34, No. 8 (2022)

similarity between the input data and the premeasured data. In our previous study,(14) we 
proposed a more accurate DTW-based method in which the user is allowed to perform two 
gestures. This method achieved an F1-score of 98.7%. In this paper, we propose a method to 
further improve this highly accurate result while using only one gesture by adding walking noise 
to the premeasured data.
	 However, in our previous study,(14) we also showed that increasing the number of candidate 
gestures caused the accuracy to decrease. Figure 2 shows the F1-scores when considering 2 to 13 
of the candidate gestures shown in Table 1. The F1-score exceeded 99% for a total of two 
candidate gestures but was only 96% when there were seven candidate gestures and 92% when 
there were 13 candidate gestures. Therefore, a concern of the proposed method is that increasing 
the number of candidate gestures will cause a slight decrease in the F1-score.
	 Many methods of gesture recognition use feature-based machine learning to improve the 
accuracy of gesture classification.(15–17) Typical methods are the k-nearest neighbor algorithm 
(k-NN), support vector machine (SVM), and random forest (RF). The proposed method was 
compared with these methods as reported in Sect. 6.

2.5	 Main related works and position of our study

	 There have been many studies of gesture recognition, the more relevant ones being on 
accelerometer-based hand gesture recognition. Murao and Terada proposed a method to 
recognize whole-body gestures including punch motion by using three types of wearable sensor.(18) 
This study achieved high recognition accuracy in several noisy environments. Zhang et al. 
proposed a framework for hand gesture recognition based on wrist-mounted sensors through the 
information fusion of a three-axis accelerometer and multichannel electromyography (EMG).(19) 
However, these studies assumed the use of sensors not commonly used in ordinary life. Our 
research targets only a smartphone and does not use EMG, hand gloves with sensors, or any 
extra sensors.
	 Gupta et al. proposed a method to recognize continuous hand gestures by using accelerometer 
and gyroscope sensors for human–machine interaction.(20) Chu et al. proposed an accelerometer-
based method to recognize 11 types of hand gesture to control household electric appliances.(21) 

Fig. 2.	 F1-scores for different numbers of candidate gestures.
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Garcia-Ceja et al. proposed hand gesture recognition while holding a smartphone.(22) This 
method achieved 93.8% accuracy with 10 types of gesture. Agrawal et al. proposed a method to 
recognize letters drawn by a user’s hand while holding a mobile phone.(23) However, these 
studies did not focus on changes in environmental noise.
	 The environment in which gestures are performed can be roughly divided into noiseless and 
noisy environments. Many studies have focused on gesture recognition in both environments. It 
is possible that the best performance can be achieved by switching between the most appropriate 
method depending on the environment. To realize this switching, it is necessary to know when 
the environment has changed. In our research, we are attempting to judge the switch from a 
noiseless environment to a noisy environment by adding this switch into the gestures. In this 
paper, we focused on the start of walking as a typical example of a switch in the environment. 
Walking is a very important behavior because it often causes switches to noisy environments 
such as when climbing stairs and getting on a train or a bus.

Table 1
Thirteen target candidate gestures.

Shake right Shake left Shake up

Shake down Shake front Shake back

Tilt right Tilt left Tilt front

Tilt back Draw circle Draw traiangle

Knock back twice
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3.	 Problem Definition

	 Our goal is to recognize gestures from the acceleration values acquired by the accelerometer 
of the smartphone in the user’s hand and use them as input operations for applications such as 
music players. In this section, we describe assumptions and the input and output of this problem.
	 The user holds the smartphone with one hand and performs a gesture while not walking. 
When the user starts walking, they hold the smartphone with one hand and do not input any 
gestures.
	 The input of this problem is the premeasured data and the data extracted with window size w 
from the continuous acceleration data. Here, w represents the number of samples and is 
sufficiently large for each gesture to be performed. The data is periodically extracted (e.g., at 
each sampling). Let A = (at0, ..., atw) denote the data extracted from time t0 to time tw.
	 The output is one of the gestures in the premeasured data or no gesture. Let N denote the 
number of gesture types and Gi (i = 1, 2, 3, ..., N) represent the gestures.
	 Premeasured data Bi measured in advance is constructed from chronological acceleration 
data Bi = (b0, ..., bui). Here, ui represents the number of samples, and all ui (i = 1, 2, 3, ..., N) are 
smaller than the window size w. A single sample of extracted data ai and the premeasured data bi 
are vectors with three parameters, because acceleration values are obtained in the x, y, and z 
directions. Let (aix, aiy, aiz) and (bix, biy, biz) denote the contents of ai and bi, respectively.
	 We target the types of gesture that can be performed while holding a smartphone with one 
hand, with the hand returning to the original position after completing the gesture. Complicated 
gestures are undesirable because they increase the memory load on the user. Finally, we adopted 
13 gestures that are relatively easy to perform (Table 1), assuming that the target application will 
need no more than 13 types of gestures. For example, in the case of a general music player, five 
types of input are required for the operations of play/stop, back, next, volume up, and volume 
down. In addition, three types of auxiliary operations are assumed, such as mute on/off, random 
on/off, and repeat on/off. In this case, a total of eight input types are required, so the 13 target 
input types are sufficient.

4.	 DTW-based Gesture Classification Method

4.1	 DTW

	 DTW quantifies the similarity between two chronological data. The input is two acceleration 
chronological data P and Q. The output is D(P, Q), which represents the distance between P and 
Q. If the two data are similar, then D(P, Q) is small, and if they are different, it is large. Since 
DTW is a well-known algorithm used for gesture classification in many studies, details are 
omitted here.(2,12,13)

4.2	 Baseline gesture classification method

	 In many studies, DTW is mainly used to calculate which gesture was performed on the basis 
of the assumption that a certain gesture has been performed. Here, we describe the basic method 
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of gesture classification by DTW. Note that nongesture acceleration data (e.g., walking noise 
data) is not expected as the input. Hereafter, we focus on how to detect and classify the extraction 
data, and we refer to a single extraction data as the input data.

	 OUTPUT: BI

	 s.t. ( ) ( ){ }( ), min ,  1,2,3, ,I iD A B D A B i N= = … 	 (1)

	 Similarities with the input data A are calculated for all premeasured data of candidate 
gestures. The distance D(A, Bi) calculated using DTW is used as the similarity, where the smaller 
the distance, the greater the similarity of the two data. Therefore, BI, which is the premeasured 
data nearest to the input data, is output as Gi.

5.	 Proposed Method

	 Conducting gesture detection and gesture classification at the same time without assuming 
that the input data includes gestures is called gesture recognition. First, two gesture recognition 
methods, which are the basis of the proposed method, are outlined in this section. Both methods 
have the common feature that they output the most similar premeasured gesture.
Threshold-based detection method (TD)
	 When the condition that only one gesture is significantly more similar than the other gestures 
is satisfied, the most similar gesture is output. Gestures are not detected unless this condition is 
satisfied.
Classification-based detection method (CD)
	 Premeasured nongesture data is added to the baseline method, and the most similar gesture 
from among the data is output. If no gesture is output, it means that no gesture has been detected.

5.1	 TD method

	 In the TD method, gestures are detected by applying a threshold value in the comparison of 
similarity. When the distance from the premeasured data BI, which has the smallest distance 
from the input data A, is significantly smaller than the distance from the premeasured data BII, 
which has the second shortest distance, then TD detects the gesture and outputs BI. If the 
distances D(A, BI) and D(A, BII) are close, then no gesture is detected. The TD method for 
gesture recognition is as follows, where θ is the threshold for gesture detection.

	 If ( ) ( ), ,I IID A B D A Bθ <  OUTPUT: BI	
	 s.t. ( ) ( ){ }( ), min ,  1,2,3, ,I iD A B D A B i N= = … 	 (2)

	 Smaller values of θ make gestures easier to detect and reduce false negatives, i.e., no gesture 
is detected even though a gesture is input. However, false positives increase for nongesture input, 
because even though there is no clear difference in similarity, the output is forced. On the other 
hand, larger values of θ make gestures harder to detect and reduce false positives. However, false 
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negatives increase. Since it is difficult to detect gestures, the user may have to repeat the gesture 
many times.

5.2	 CD method

	 In the CD method, walking noise data Bz is added to the premeasured data. The CD method 
also classifies gestures from both premeasured gestures and walking noise data. The difference 
from the DTW-based method mentioned in Sect. 4 is the addition of walking noise data to the 
premeasured data. When the input data is classified into the premeasured gesture data, the 
gesture is detected and output at the same time. When the distance from the walking noise data 
is shorter than the distance from all other premeasured data, no gesture is detected. The CD 
method for gesture recognition is as follows.

	 If  I zB B≠  OUTPUT: BI	
	 s.t. ( ) ( ){ }( ), min ,  1,2,3, , ,I iD A B D A B i N z= = … 	 (3)

5.3	 Proposed TCD method

	 We propose a gesture recognition method that combines the TD and CD methods, called the 
threshold and classification-based detection method (TCD). The walking noise data Bz is added 
to the premeasured data in advance. First, the distances between the input data A and all of the 
premeasured data Bi (i = 1, 2, 3, ..., N, z) are calculated. Here, BI and BII represent the gestures in 
the premeasured data with the shortest and second shortest distances from A, respectively. If BI = 
Bz, then no gesture is detected. Otherwise, BI is output only if the distance D(A, BI) is 
significantly shorter than the distance D(A, BII). The TCD method for gesture recognition is as 
follows.

	 If ( ) ( ), ,  & & I II I zD A B D A B B Bθ < ≠  OUTPUT: BI	
	 s.t. ( ) ( ){ }( ), min ,  1,2,3, , ,I iD A B D A B i N z= = … 	 (4)

Comparison of proposed method and TD
	 Consider the case where the characteristics of walking noise resemble one of the premeasured 
gesture data. The TD method simply outputs the most similar gesture. On the other hand, the 
proposed TCD method correctly classifies it as walking noise data due to the addition of walking 
noise data to the premeasured data.
Comparison of proposed method and CD
	 In CD, walking noise data is also prepared as premeasured data. However, since there are 
various patterns of walking noise, the input walking noise data may be completely different from 
the premeasured walking noise. In this case, CD incorrectly outputs the closest gesture. On the 
other hand, even if walking noise that is completely different from the premeasured data is input, 
the proposed method does not detect a gesture unless there is premeasured data that is clearly 
similar to the input data.
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6.	 Evaluation

	 In our experiment, we assumed that each gesture is performed while the user is stationary, 
i.e., not walking. First, the appropriate values of the threshold θ used in TD and TCD were 
evaluated, and then they were compared with the F1-score of each comparison method.

6.1	 Environment

	 In this experiment, we assumed that the user is using a music player outdoors. As mentioned 
in Sect. 3, a general music player requires five types of essential operation and three types of 
auxiliary operation. Here, 13 types of gesture are set as input candidates, which is a sufficient 
number of gestures for our assumption. Nine subjects participated in this experiment, in which 
an iPhone8 with a 100 Hz three-axis accelerometer was used. Each subject acquired data 15 
times for each gesture. In addition, each subject also acquired walking noise data while holding 
the smartphone. We evaluated gesture detection and gesture classification at the same time.
	 We compared TD and CD with the proposed method. TD, CD, and TCD require premeasured 
gesture data. Among the 15 data acquired by one subject for one type of gesture, one data was 
used as premeasured data and the remaining 14 data were used as test data. Cross-validation was 
performed for all 15 premeasured data selections for each gesture. Furthermore, classification 
algorithms based on machine learning were also used for comparison. We used k-NN, SVM, and 
RF, which are typical feature-based learning models. In these methods, 14 data were used as 
training data and one data was used as test data. Cross-validation was used for the evaluation.
	 The window size of premeasured walking noise data was set to the same as the average time 
of the premeasured gesture data. The data could contain either a one-step wave or a two-step 
wave. Since the recognition accuracy was high when the data contained two steps, we adopted 
two-step data. The window size of the test data was set to the largest size of all the gesture data 
obtained from all subjects. Since we target the start of walking, the data in which the step impact 
starts in the middle of the data cannot be used as test data. For this reason, the test data of 
walking was extracted so that it did not start in the middle of the step impact. The number of 
walking noise data for each subject was set to 2730 samples, the same as the total number of 
evaluations for each gesture in the cross-validation. The test data were extracted so that there 
was no time overlap.

6.2	 Investigation of appropriate threshold θ

	 In TD and TCD, the threshold θ affects the detectability of gestures. Therefore, we focus on 
the change in the F1-score when θ is changed. The change in the F1-score when θ is changed by 
increments of 0.01 is shown for TD and TCD in Figs. 3 and 4, respectively. With the change in 
the value of θ, false positives and false negatives, which have a trade-off relationship, increase 
and decrease, respectively. It is considered that θ is an appropriate value when the F1-score takes 
the maximum value. We confirmed that the value of θ with the largest average F1-score for each 
user was 1.16 and 1.02 for TD and TCD, respectively.
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6.3	 Performance comparison

	 For TD and TCD, we used the best θ values obtained as described in Sect. 6.2. A total of 18 
features were used in k-NN, SVM, and RF, which are classification algorithms based on machine 
learning. These are the maximum, median, minimum, root mean square, mean, and variance in 
the x, y, and z directions. Parameters were optimally tuned by Optuna(24) for each machine 
learning method.
	 Table 2 shows the F1-score for each user for the methods of k-NN, SVM, RF, TD, CD, and 
TCD. We confirmed that the proposed method TCD was able to recognize gestures with higher 
F1-scores than TD, k-NN, SVM, and RF. TCD has better performance than CD, although the 
difference is small. Therefore, we investigated whether the difference is significant. We first 

Fig. 3.	 (Color online) F1-score for TD.

Fig. 4.	 (Color online) F1-score for TCD.
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confirmed that the hypothesis that the results of CD and TCD both follow a normal distribution 
could not be rejected by the Shapiro–Wilk test. Their scores were p = 0.39 for CD and p = 0.37 
for TCD. As a result of a t-test based on homoscedasticity investigation, a significant difference 
(p = 0.019) was found in TCD compared with CD. In this experiment, we use a θ value common 
to all users. If the optimum θ value can be set for each user, the performance of the proposed 
method will be further improved.
	 Figure 5 shows the precision, recall, and F1-score of TCD with θ = 1.02 for each gesture, 
where the total result for all nine subjects is shown. The recall of the walking noise was 1. No 
false positive occurred in the walking noise in TCD. The highest F1-score was 99.29% for the 
gesture of tilt back, and the lowest F1-score was 95.19% for tilt front. We confirmed that the 
recall values of shake front, shake right, and shake up were markedly low, making it easy for 
them to be falsely detected. Since the recall of shake back was 99.95%, the “shake” gesture itself 
does not tend to be falsely detected.

Table 2
F1-score for each method.

k-NN SVM RF TD CD TCD
User1 98.30 96.60 98.98 99.79 99.97 99.97
User2 90.73 95.41 92.01 94.37 94.85 95.04
User3 94.47 93.54 93.88 87.54 98.63 98.69
User4 92.52 95.24 93.95 99.20 99.73 99.74
User5 95.99 96.94 97.01 94.82 96.24 96.31
User6 90.14 94.22 95.24 89.96 92.45 92.47
User7 97.69 97.69 98.37 92.88 99.25 99.30
User8 93.62 92.26 95.58 95.40 96.56 96.59
User9 92.60 95.94 97.28 96.71 97.98 97.98
Average 94.01 95.43 95.81 94.51 97.30 97.34

Fig. 5.	 (Color online) Precision, recall, and F1-score of TCD for each gesture.
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7.	 Discussion

7.1	 Consideration of experimental results and possibility of improvement

	 In Sect. 6.2, we described the relationship between the θ value and F1-score. If θ is small, 
each method forcibly detects some kind of gesture even if the data is not similar to any gesture. 
This is why the F1-score is extremely low when θ is small in TD, as shown in Fig. 3. Noise data 
that is not similar to any gesture can be stably classified as no gesture when θ is greater than 
1.05. On the other hand, in TCD, walking noise is included in the premeasured gesture data; 
thus, walking noise can be discriminated even if θ is small.
	 In TD, the F1-score strongly depends on θ, whereas the dependence of the F1-score on θ is 
smaller in TCD. Furthermore, in TCD, the F1-score does not increase sharply only when a 
certain θ value is set, and it is stable and high. This shows the robustness of this method, i.e., the 
F1-score does not drop significantly even when θ is set to a slightly incorrect value. Thus, by 
conducting preliminary experiments with a sufficient number of subjects and calculating the 
optimum θ value in advance, a good θ value can be provided for new users. In addition, the 
performance of the method can be improved by introducing a mechanism that learns the user’s 
movement and adjusts the θ value and premeasured data appropriately.
	 In Sect. 6.3, we described the performance of each method. The major difference between 
CD and TCD is whether walking noise can be recognized correctly when the walking noise is 
similar to other gestures. In our experiment, there were few such cases; thus, the performances 
of CD and TCD were similar. Depending on the type of gesture candidate, several gestures may 
be very similar to walking noise. In this case, the difference in the performance of CD and TCD 
may be large. The type of gesture that is selected as a candidate is an important issue.
	 As shown in Table 2, regardless of the θ value, the recognition accuracy of User 6 was clearly 
lower than that of the other users. Therefore, we focus on User 6. The confusion matrix for the 
best TCD performance of User 6 is shown in Table 3.

Table 3
Confusion matrix of User 6 in TCD.

A B C D E F G H I J K L M N
A (shake right) 141 4 0 0 0 0 47 0 0 0 0 0 2 16
B (shake left) 6 196 0 0 0 0 0 2 0 0 0 0 0 6
C (shake up) 0 0 192 17 0 0 0 0 0 0 0 0 0 1
D (shake down) 0 0 3 206 0 1 0 0 0 0 0 0 0 0
E (shake front) 0 0 0 0 104 0 0 0 96 0 0 0 0 10
F (shake back) 0 0 0 0 0 210 0 0 0 0 0 0 0 0
G (tilt right) 0 0 0 0 0 0 210 0 0 0 0 0 0 0
H (tilt left) 0 1 0 0 0 0 0 209 0 0 0 0 0 0
I (tilt front) 0 0 0 0 7 0 0 0 200 0 0 0 0 3
J (tilt back) 0 0 0 0 0 1 0 0 0 208 0 0 0 1
K (draw circle) 0 0 0 0 0 0 0 0 0 0 210 0 0 0
L (draw triangle) 0 0 0 0 0 0 0 0 0 0 1 208 0 1
M (knock back twice) 0 0 0 0 0 0 0 0 0 0 0 0 210 0
N (no gesture) 0 0 0 0 0 0 0 0 0 0 0 0 0 2730



Sensors and Materials, Vol. 34, No. 8 (2022)	 3013

	 In Table 3, there are two noticeable misrecognitions: shake right and shake front gestures 
tend to be falsely recognized as tilt right and tilt front, respectively. Experimental results from 
other users do not show these extreme misrecognition biases. Therefore, this misrecognition can 
be concluded to be a characteristic of User 6. From this result, it was shown that there may be 
combinations of gestures that are difficult to recognize for individuals.
	 The confusion matrix corresponding to the sum of the results of all subjects is shown in 
Table 4. As a result of our effort in selecting the optimal premeasured walking data, it was 
possible to completely eliminate the case of walking being mistaken for another gesture. Our 
target gestures are actions that intentionally move a smartphone. On the other hand, walking 
with the device in the hand may often make users conscious of the need to keep their hand as 
stationary as possible. The impact of the step was measured as a major feature compared with 
the movement of the hand. For this reason, we consider that a clear difference was made between 
walking and other gestures. Table 4 also shows that no case was confirmed in which any gesture 
was mistaken for walking. Except for the extremely biased error of User 6, there are a relatively 
large number of misrecognition of shake up and shake down. Immediately before shaking up, the 
smartphone may have been slightly lowered to gain momentum.

7.2	 Points to note and limitations of our paper

	 The subjects conducted all gestures and walking immediately after listening to the 
experimenter’s explanation. The results presented in Sect. 6 used data obtained in this way. Note 
that we did not use data acquired in various environments, and different results may be obtained 
in different environments, such as on a rainy day or when holding a smartphone with the 
nondominant hand. By acquiring data for at least several months, it should be possible to acquire 
data more suitable for daily life.

Table 4
Confusion matrix of all subjects in TCD.

A B C D E F G H I J K L M N
A (shake right) 1759 21 13 1 0 0 57 0 0 0 3 2 2 32
B (shake left) 29 1820 0 5 0 4 0 3 0 1 1 0 9 18
C (shake up) 3 1 1776 53 0 3 0 0 8 0 4 0 12 30
D (shake down) 1 4 21 1846 1 1 0 1 0 0 0 0 5 10
E (shake front) 0 0 0 0 1768 1 0 0 104 1 0 0 2 14
F (shake back) 0 0 0 0 0 1890 0 0 0 0 0 0 0 0
G (tilt right) 0 1 0 0 0 0 1836 27 0 0 0 0 20 6
H (tilt left) 0 1 0 0 0 0 1 1886 0 0 0 0 0 2
I (tilt front) 0 0 0 0 22 0 3 17 1817 12 0 0 8 11
J (tilt back) 0 0 0 0 8 1 0 0 0 1876 0 0 0 5
K (draw circle) 1 0 9 0 0 0 0 0 0 0 1861 11 0 8
L (draw triangle) 4 11 0 14 0 0 0 0 0 0 3 1841 0 17
M (knock back twice) 0 3 3 10 6 21 0 0 2 0 1 1 1831 12
N (no gesture) 0 0 0 0 0 0 0 0 0 0 0 0 0 24570
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	 In addition, our experiments revealed a non-negligible characteristic of User 6. It can be 
expected that other users will have similar characteristics. To investigate such characteristics, 
more experiments with a large number of subjects are required.

8.	 Conclusions

	 We proposed a gesture recognition method that improves the F1-score from that of the 
existing TD and CD methods. The features of the proposed method are to add walking noise into 
the premeasured data and set a threshold that affects the detectability of gestures. In our 
experiment, it was found that by adjusting the threshold, the proposed method achieved the best 
performance among six methods including machine-learning-based classification methods.
	 Our work currently targets environmental switches that involve the start of walking and does 
not cover other environments such as suddenly starting to run. As future work, we plan to 
consider many types of switch unrelated to walking.
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