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	 With improvements in the quality of life, people have paid increased attention to their health. 
According to the American Heart Association, cardiovascular disease was one of the leading 
causes of death globally as of 2016. Medical experts estimate that the worldwide annual number 
of people dying from cardiovascular disease will reach 23.6 million by 2030. Detecting heart 
arrhythmias effectively and quickly is critical for preventing cardiovascular disease. In this 
paper, a one-dimensional Taguchi-based convolutional neuro-fuzzy network (1D-TCNFN) for 
detecting arrhythmia in electrocardiograms (ECGs) is proposed. The proposed 1D-TCNFN 
adopts neuro-fuzzy instead of conventionally connected layers to reduce the number of learned 
parameters in the network. Four feature fusion methods, namely, global average pooling, global 
max pooling, channel average pooling, and channel max pooling, are employed in the 
1D-TCNFN. For an increased detection accuracy, the Taguchi method was used to optimize the 
network architecture of the proposed 1D-TCNFN. In the experiments, the open Massachusetts 
Institute of Technology–Beth Israel Hospital (MIT-BIH) Arrhythmia Database was adopted to 
verify the performance of the proposed method for detecting 17 different arrhythmia signals. 
The proposed 1D-TCNFN exhibited a detection accuracy of 93.95% for the MIT-BIH 
Arrhythmia Database.

1.	 Introduction

	 Arrhythmia is a common cardiovascular condition that is caused by abnormal electrical 
conduction in the heart. The most common clinical symptoms include palpitations, chest 
tightness, and chest pain.(1) According to the American Heart Association, as of 2016, 
cardiovascular disease caused 17.3 million deaths annually worldwide.(2) Electrocardiogram 
(ECG) analysis is typically used to determine the type of arrhythmia. Electrocardiogram signal 
measurement is a simple, fast, safe, and noninvasive procedure that can collect a large amount of 
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data for analysis in a short time. A standard ECG contains 12 recordings of current activity 
directions (six chest leads and six limb leads). Through the analysis of these 12 lead signals, 
heart diseases such as atrial fibrillation and myocardial infarction can be detected.(3) 
Arrhythmias can be either persistent or sporadic. Thus, for an accurate diagnosis, the ECG 
signals of some patients must be monitored continuously for an extended period (usually 
between 24 and 72 h). The collected ECG signal is then examined manually by a doctor. This 
method is time-consuming and inefficient, placing a substantial burden on medical personnel.(4)

	 To automatically detect abnormal ECG signals, many scholars have developed algorithms 
that analyze ECG signal characteristics. These algorithms are mainly based on the classification 
of Q, R, and S waves (QRS complexes) or the analysis of segmental ECG signals.(5,6) Alvarado et 
al.(7) proposed a time-based integrate-and-fire sampler encoding method that compresses the 
ECG signal and reduces the number of labeled heartbeats required by expert cardiologists. 
Mateo et al.(8) employed the radial basis function neural network to remove ectopic beats in ECG 
recordings to address mutual interference in ECG analysis. In the fragmented ECG signal 
analysis method, Lin and Zhang(9) proposed an autodetection algorithm that extracts features 
from ECG signals for classifying multiple types of cardiac states. The F1-score of the method 
reached 0.908, indicating that different types of cardiac abnormalities can be effectively 
detected. Padmavathi and Ramakrishna(10) compared the performance characteristics of 
k-nearest neighbors (KNN) and kernel support vector machine (SVM) by using 5, 15, and 30 s 
ECG segments. They found that the classification accuracy reached 90% when 30-s ECG 
segments were classified using the KNN with the Burg method. However, the classification of 
arrhythmia symptoms based on a QRS complex is highly challenging and error-prone. The 
features extracted from the ECG signal vary between patients. Therefore, arrhythmia detection 
methods using long-term ECG segments have increased in popularity.
	 Machine learning has been widely used in the medical field. Usman et al.(11) adopted machine 
learning for predicting epileptic seizures. First, the authors used empirical mode decomposition 
to extract features from electroencephalogram (EEG) signals. Subsequently, a prediction model 
was established by applying SVM. Thambiraj et al.(12) designed a system for predicting 
cardiovascular ailments. They employed a genetic algorithm (GA) to select physiological 
features and then used the random forest method to establish the prediction model. The 
experimental results indicate that the features selected by the GA can effectively improve the 
prediction accuracy of the model. Machine learning methods comprise the following three steps: 
signal feature extraction, feature selection, and predictive model construction.(13) The extraction 
and selection of features are critical for arrhythmia detection. Selecting appropriate features can 
help improve the accuracy of the prediction model. ECG features include heart rate variability, 
QRS complex width, and QT interval.(14) The above-mentioned literature points out that machine 
learning can be effectively applied in the medical field. However, these feature signals are 
extracted manually, making the consideration of all states practically impossible. Thus, deep 
learning methods with automatic feature extraction capabilities are suitable for signal analysis 
applications.(15–17) In this study, we employ a deep learning approach to solve the arrhythmia 
classification problem. 
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	 Among deep learning methods, the convolutional neural network (CNN) is the most widely 
known. Through the convolution operation, important features can be directly extracted from 
raw data instead of through manual extraction. The extracted features are then fed into fully 
connected layers to construct prediction or classification models. Although fully connected 
neural networks have excellent nonlinear mapping ability, they include 90% of the parameters 
and computations in the CNN. Effectively reducing the number of parameters in the network is 
the key for improving system performance. Numerous scholars have integrated fuzzy theory and 
neural networks, and have designed neuro-fuzzy networks such as ANFIS,(18) IT2FNN,(19) and 
FMM.(20) Unlike traditional neural networks, neuro-fuzzy networks combine fuzzy logic 
(similar to human reasoning) and the learning ability of the neural network, which can 
automatically construct rules and reduce the number of learnable parameters in the network. 
However, parameter design in the network architecture is also a key factor related to the overall 
performance. In engineering, the Taguchi method(21) is often used to optimize system 
parameters. In this method, the analysis of a small amount of experimental data can be used to 
effectively improve system performance.
	 In this study, we designed a one-dimensional (1D) Taguchi-based convolutional neuro-fuzzy 
network (1D-TCNFN), which combines the Taguchi method and a convolutional neuro-fuzzy 
network, for arrhythmia detection. The open Massachusetts Institute of Technology–Beth Israel 
Hospital (MIT-BIH) Arrhythmia Database(22) was used to experimentally evaluate the 
performance of the proposed 1D-TCNFN. The contributions of this study are as follows:
1.	 A new 1D-TCNFN for detecting arrhythmia is proposed.
2.	 Four feature fusion methods, namely, global average pooling, global max pooling, channel 

average pooling, and channel max pooling, are employed.
3.	 Compared with traditional CNN architectures, the proposed 1D-TCNFN has fewer network 

parameters and a higher detection accuracy.
4.	 The architecture of the 1D-TCNFN designed by employing the Taguchi method can be 

adjusted for different application problems.
5.	 The experimental results reveal that the proposed 1D-TCNFN can effectively detect different 

arrhythmia symptoms.
	 This paper is organized as follows. In Sect. 2, we describe the proposed method, in Sect. 3, 
we discuss the experimental results, and in Sect. 4, we provide the conclusions and future 
research directions.

2.	 Methods

	 In this section, we describe the proposed method for the detection of arrhythmia. First, we 
introduce the proposed 1D-TCNFN architecture in Sect. 2.1. Through the use of the 1D-TCNFN, 
17 types of arrhythmia can be detected in long-term ECG signals (3600 sampling rate, equivalent 
to 10 s). We present the use of the Taguchi method for optimizing the hyperparameters of the 
1D-TCNFN architecture in Sect. 2.2; in this manner, an optimized parameter combination can 
be obtained through a limited number of experiments.



2856	 Sensors and Materials, Vol. 34, No. 7 (2022)

2.1	 Proposed 1D-TCNFN

	 The proposed 1D-TCNFN has a total of six layers comprising one input layer, three 1D 
convolutional layers, one feature fusion layer, one fuzzification layer, one rule layer, and one 
output layer. The 1D-TCNFN architecture is presented in Fig. 1.
	 The detailed description of each network layer in 1D-TCNFN is as follows.
(1) Input layer
	 X is a 1D signal with an input size of 3600 and is passed to the next layer.

	 { }1 2, ,..., iX x x x= 	 (1)

Here, i = 1, 2, …, 3600 is the index of the 1D signal.

(2) Convolutional layer
	 The 1D signal from the input layer is convolved with the convolution kernel to obtain 
different disease features. The operation of convolution is expressed as
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where yConv is the feature map output by the convolutional layer, f refers to the number of feature 
maps, k represents the index of the convolution kernel, ks is the size of the convolution kernel, s 
denotes the stride, and wConv is the convolution kernel. (Here, the Glorot uniform distribution is 
used to initialize the parameters of the convolution kernel.)

(3) Feature fusion layer
	 Choosing an appropriate feature fusion method in the feature fusion layer can reduce the 
complexity of the feature map and improve the model performance. Common feature fusion 
methods include global average pooling, global max pooling, channel average pooling, and 
channel max pooling, as presented in Fig. 2.

Fig. 1.	 (Color online) 1D-TCNFN architecture.



Sensors and Materials, Vol. 34, No. 7 (2022)	 2857

	

[ ] [ ]( )
[ ] [ ]( )
[ ] [ ]( )
[ ] [ ]( )

GAP Conv

GMP Conv
fusion

CAP Conv

CMP Conv

y f Avg y f

y f Max y f
y

y u Avg y u

y u Max y u

 =

 =


=


=

	 (3)

Here, yGAP represents the global average pooling that uses the average operation for each feature 
map, yGMP indicates the global max pooling that uses the max operation for each feature map, 
yCAP is the channel average pooling that uses the average operation for each channel of the 
feature map, and yCMP denotes the channel max pooling that uses the max operation for each 
channel of the feature map.

(4) Fuzzification layer
	 In this layer, fuzzy inferences are designed to evaluate the degree to which the feature vectors 
belong to each of the appropriate fuzzy sets. The IF-THEN rule can be expressed as 

Rule[ j] : IF yfusion[1] is A[1j] and yfusion[2] is A[2] and … and yfusion is A[nj],
THEN y[ j] = woutput[ j],

where yfusion is the fused feature vector, A[ij] represents the fuzzy set, woutput[ j] indicates the 
weight of the output, and j = 1, 2, 3, …, r is the number of rules. In this study, the Gaussian 
membership function is adopted. The Gaussian membership function is defined as 

	 ( )( )2 2[ ] exp [ ] [ ] / [ ]fusionM ij y i m ij sd ij= − − ,	 (4)

where M[ij] is the Gaussian membership function, and m[ij] and sd[ij] are the mean and standard 
deviation of the Gaussian membership function, respectively.

Fig. 2.	 (Color online) Feature fusion: (a) global pooling and (b) channel pooling.

(a) (b)
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(5) Rule layer
	 By combining the memberships obtained in the previous stage and multiplying them, the 
firing strengths of the fuzzy rules can be obtained.

	 [ ] [ ]
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=
= ∏ 	 (5)

(6) Output layer
	 The output youtput is calculated as 
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2.2	 Taguchi method

	 To design a prediction model with favorable stability and high accuracy, the experience of 
experts or experimental methods such as trial-and-error, one-factor, and full-factorial experiment 
are typically used. However, these methods require numerous experiments, which is not only 
time-consuming but also expensive. By contrast, the Taguchi method is used to rapidly and 
inexpensively determine an optimum combination of parameters through statistical methods. 
The Taguchi method has the following six steps: (1) defining the problem, (2) determining 
control factors and levels, (3) designing an orthogonal table, (4) conducting experiments, (5) 
analyzing experimental results, and (6) validating experimental results. The flowchart of the 
Taguchi method is presented in Fig. 3.
	 In this experiment, we optimized the architectural parameters of the 1D-TCNFN by using the 
Taguchi method. Eight control factors (the convolution kernel sizes and filter numbers of the 
three layers, fusion method, and the number of fuzzy rules) were selected to optimize the 
network architecture. Except for the number of fuzzy rules for which two levels were selected, 
four levels were selected for the remaining control factors, as presented in Table 1.
	 As presented in Table 1, a total of eight control factors were identified; of these, seven factors 
have a level of 4 and the remaining one has a level of 2. If the full-factorial experiment method 
were to be used to complete this experiment, a total of 32768 (21 × 47) experiments would be 
required. Through the design and selection of the orthogonal table, the desired experimental 
results can be obtained in a small number of experiments. We used the L32 orthogonal table 
(Table 2) to design this experiment.
	 To increase the reliability of the experiment, we performed four experiments with each 
combination, yielding a total of 128 (32 × 4) experiments. The obtained experimental data 
indicate the effect of each control factor on the experimental results through the signal-to-noise 
(SN) ratio. Our aim was to effectively improve the accuracy performance by maximizing the SN 
ratio. The SN ratio is defined as 

	
2

1

1 110log
n
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Fig. 3.	 Flowchart of Taguchi method.

Table 1
Control factors and their levels.
No. Control factors Level 1 Level 2 Level 3 Level 4
A Convolution Layer 1 Filter 16 32 64 128
B Convolution Layer 1 Kernel Size 15 30 60 120
C Convolution Layer 2 Filter 32 64 128 256
D Convolution Layer 2 Kernel Size 7 15 30 60
E Convolution Layer 3 Filter 64 128 256 512
F Convolution Layer 3 Kernel Size 7 15 30 60
G Fusion Method CAP GAP CMP GMP
H Fuzzy Rule 32 64 – –
CAP: channel average pooling; GAP: global average pooling; CMP: channel max pooling; GMP: global max 
pooling.

Table 2
Orthogonal array select table.
Orthogonal array 2 levels 4 levels
L8 1–4 1
L16 2–12 1
L16 1–9 2
L16 1–6 3
L16 1–3 4
L32 1 2–9
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where η is the S/N ratio (larger is better), n represents the number of experiments, and y indicates 
the accuracy of the experiment. The optimal parameter combination can be found by analyzing 
the S/N ratio of each control factor.

3.	 Experimental Results

	 In this study, the MIT-BIH Arrhythmia Database was adopted to evaluate the performance of 
the proposed 1D-TCNFN. This section is divided into three subsections: (1) Introduction to the 
MIT-BIH Arrhythmia Database, (2) 1D-TCNFN optimized by Taguchi method, and (3) 
1D-TCNFN results for arrhythmia detection.

3.1	 MIT-BIH Arrhythmia Database

	 The MIT-BIH Arrhythmia Database contains 48 half-hour dual-channel ECG signals with a 
sampling frequency of 360 Hz. The signals were obtained from 47 individuals: 25 men aged 
32–89 years and 22 women aged 23–89 years. Each record was split into several segments (10 s 
each). The dataset has a total of 1000 data segments and was divided into training data, 
verification data, and test data at a ratio of 70:15:15. The detailed detection categories and data 
segmentation status are presented in Table 3.
	 A total of 17 different heart rhythm categories are included in these data. Figure 4 presents 
three heart rhythm signal samples. Figure 4(a) is a normal heart rhythm signal, Fig. 4(b) is an 
atrial premature beat signal, and Fig. 4(c) is a pacemaker rhythm signal.

Table 3
ECG signal dataset.
No. Categories Total Train Val Test
1 Normal sinus rhythm 283 200 47 36
2 Atrial premature beat 66 44 10 12
3 Atrial flutter 20 13 3 4
4 Atrial fibrillation 135 96 21 18
5 Supraventricular tachyarrhythmia 13 9 2 2
6 Pre-excitation (WPW) 21 15 4 2
7 Premature ventricular contraction 133 98 19 16
8 Ventricular bigeminy 55 38 8 9
9 Ventricular trigeminy 13 10 2 1

10 Ventricular tachycardia 10 7 1 2
11 Idioventricular rhythm 10 7 2 1
12 Ventricular flutter 10 6 1 3
13 Fusion of ventricular and normal beat 11 7 3 1
14 Left bundle branch block beat 103 73 11 19
15 Right bundle branch block beat 62 45 8 9
16 Second-degree heart block 10 6 3 1
17 Pacemaker rhythm 45 26 4 14

Total 1000 700 150 150
Test: testing; Train: training; Val: validation.
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3.2	 Optimal parameters based on Taguchi method

	 The proposed 1D-TCNFN comprises three convolutional layers, one feature fusion layer, one 
fuzzification layer, one rule layer, and one output layer, as presented in Table 4. The network 
architecture contains numerous adjustable hyperparameters, and through the Taguchi 
experiment, the optimal parameter combination can be identified from these hyperparameters. 
In this experiment, the L32 (21 × 47) orthogonal table is used, as shown in Table 5. The 
orthogonal table can reduce the number of experiments to only 32. To improve stability in the 
Taguchi experiment, four experiments were performed for each parameter combination. During 
the Taguchi experiment, the optimizer was Adam, the learning rate was set to 0.001, the batch 
training size was 128, and the number of iterations for training was 100.
	 After the Taguchi experiment, the S/N ratio for all control factors was calculated to analyze 
each factor’s contribution. Table 6 shows the six control factors, namely, convolution 1 filter (A), 
convolution 1 kernel size (B), convolution 2 filter (C), convolution 2 kernel size (D), convolution 
3 filter (E), convolution 3 kernel size (F), fusion method (G), and fuzzy rule (H). The top three 
factors affecting the accuracy of the network were the fusion method (G), convolution 3 kernel 
size (F), and convolution 2 kernel size (D). By contrast, different fusion methods considerably 
affected the accuracy of the 1D-TCNFN (Fig. 5). Specifically, the 1D-TCNFN using the global 
max pooling fusion method outperformed the other fusion methods in terms of arrhythmia 
detection accuracy.

(a) (b) (c)

Fig. 4.	 (Color online) Sample signals of different classes: (a) normal sinus rhythm, (b) atrial premature beat, and (c) 
pacemaker rhythm.

Table 4
Architecture of 1D-CNFN.
Layer Layer name Kernel × Filter Other layer parameters
1 Input Layer — Input_size = 3600
2 Convolution Layer 1 30 × 32 ReLU, Strides = 2
3 Convolution Layer 2 15 × 64 ReLU, Strides = 2
4 Convolution Layer 3 15 × 128 ReLU, Strides = 2
5 Global Average Pooling Layer — —
6 Fuzzy Rule Layer — Rule = 64
7 Output Layer 1 × 17 Softmax
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Table 5
L32 (21 × 47) orthogonal array and results.
No. A B C D E F G H Y0 Y1 Y2 Y3
1 16 15 32 7 64 7 CAP 32 0.30 0.26 0.24 0.32
2 16 30 64 15 128 15 GAP 32 0.82 0.87 0.89 0.82
3 16 60 128 30 256 30 CMP 32 0.24 0.52 0.24 0.24
4 16 120 256 60 512 60 GMP 32 0.24 0.24 0.24 0.24
5 32 15 32 15 128 30 CMP 32 0.24 0.24 0.24 0.24
6 32 30 64 7 64 60 GMP 32 0.93 0.91 0.91 0.92
7 32 60 128 60 512 7 CAP 32 0.34 0.47 0.44 0.42
8 32 120 256 30 256 15 GAP 32 0.90 0.92 0.93 0.91
9 64 15 64 30 512 7 GAP 32 0.86 0.88 0.89 0.91

10 64 30 32 60 256 15 CAP 32 0.36 0.34 0.45 0.33
11 64 60 256 7 128 30 GMP 32 0.93 0.93 0.97 0.96
12 64 120 128 15 64 60 CMP 32 0.24 0.24 0.24 0.24
13 128 15 64 60 256 30 GMP 32 0.92 0.88 0.92 0.92
14 128 30 32 30 512 60 CMP 32 0.24 0.24 0.24 0.24
15 128 60 256 15 64 7 GAP 32 0.91 0.89 0.82 0.89
16 128 120 128 7 128 15 CAP 32 0.37 0.24 0.28 0.36
17 16 15 256 7 512 15 CMP 64 0.24 0.24 0.24 0.24
18 16 30 128 15 256 7 GMP 64 0.86 0.87 0.92 0.88
19 16 60 64 30 128 60 CAP 64 0.41 0.49 0.52 0.36
20 16 120 32 60 64 30 GAP 64 0.92 0.90 0.89 0.93
21 32 15 256 15 256 60 CAP 64 0.33 0.48 0.42 0.46
22 32 30 128 7 512 30 GAP 64 0.90 0.93 0.93 0.93
23 32 60 64 60 64 15 CMP 64 0.53 0.24 0.51 0.24
24 32 120 32 30 128 7 GMP 64 0.93 0.91 0.91 0.95
25 64 15 128 30 64 15 GMP 64 0.94 0.91 0.90 0.90
26 64 30 256 60 128 7 CMP 64 0.24 0.24 0.24 0.24
27 64 60 32 7 256 60 GAP 64 0.93 0.92 0.95 0.93
28 64 120 64 15 512 30 CAP 64 0.26 0.45 0.39 0.35
29 128 15 128 60 128 60 GAP 64 0.24 0.24 0.24 0.24
30 128 30 256 30 64 30 CAP 64 0.24 0.24 0.24 0.24
31 128 60 32 15 512 15 GMP 64 0.94 0.95 0.91 0.95
32 128 120 64 7 256 7 CMP 64 0.46 0.24 0.46 0.24
CAP: channel average pooling; GAP: global average pooling; CMP: channel max pooling; GMP: global max 
pooling.

Table 6
S/N ratios of control factors.

Control factors
Level A B C D E F G H
1 −7.301 −7.398 −5.965 −5.895 −6.251 −5.757 −9.404 −6.649
2 −5.164 −6.299 −5.198 −5.798 −7.236 −5.717 −2.382 −6.286
3 −5.776 −4.975 −7.179 −5.907 −5.255 −6.084 −11.870 –
4 −7.628 −7.198 −7.527 −8.269 −7.127 −8.311 −2.214 –
Delta 2.464 2.423 2.328 2.472 1.981 2.594 9.656 0.3630
Rank 4 5 6 3 7 2 1 8
Best level 2 3 2 2 3 2 4 2
Optimal parameter 32 60 64 15 256 15 GMP 64
CAP: channel average pooling; GAP: global average pooling; CMP: channel max pooling; GMP: global max 
pooling.
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3.3	 Model evaluation for arrhythmia detection

	 To evaluate the effectiveness of the proposed 1D-TCNFN, four evaluation metrics, namely, 
accuracy, recall, precision, and F1-score, were used. The definition of each evaluation indicator 
is as follows.

	 TP TNAccuracy
TP FP TN FN

+
=

+ + +
	 (8)

	 TPRecall
TP FP

=
+

	 (9)

	 TPPrecision
TP FN

=
+

	 (10)

	 21 Precision RecallF score
Precision Recall
× ×

− =
+

	 (11)

Here, TP, FP, TN, and FN denote true positive, false positive, true negative, and false negative, 
respectively. The confusion matrix of the detection accuracy of the 1D-TCNFN is presented in 
Fig. 6 and reveals that the pacemaker rhythm (category 17) is misclassified as the normal sinus 
rhythm (category 1) for 25% of instances. That is, the characteristics of the pacemaker rhythm 
signal are similar to those of the normal sinus rhythm signal; thus, the detection accuracy of the 
1D-TCNFN for this category is only 66.67%. However, in other arrhythmia categories, the 
1D-TCNFN can effectively detect different arrhythmia conditions, with an accuracy ranging 
from 80 to 100%.

Fig. 5.	 (Color online) Renderings of control factor.
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	 To demonstrate the superiority of the proposed method, seven deep learning models with 
different architectures, namely, 1D-LeNet,(23) 1D-AlexNet,(24) 1D-VGG16,(25) 1D-GoogLeNet,(26) 
1D-ResNet18,(27) 1D-ResNet50,(28) and 1D-CNFN (without Taguchi optimization), were used to 
compare the detection performance characteristics (Table 7). When the global average pooling 
or global max pooling fusion method was employed in the proposed 1D-CNFN, an accuracy of 
88.95 or 91.45%, respectively, was achieved. Moreover, the accuracy obtained using the Taguchi 

Fig. 6.	 (Color online) Confusion matrix of 1D-TCNFN for arrhythmia detection.

Table 7
Comparison of detection results with different methods.
Method Feature fusion Accuracy (%) Recall (%) Precision (%) F1-score (%)
1D-LeNet — 25.73 27.48 23.60 25.38
1D-AlexNet — 42.13 42.74 41.20 41.96
1D-VGG16 — 47.20 53.44 42.67 44.47
1D-GoogLeNet — 77.87 80.93 75.33 78.03
1D-ResNet18 — 84.00 86.02 83.07 84.50
1D-ResNet50 — 48.40 51.37 47.07 49.01

1D-CNFN

CAP 37.63 41.37 28.53 33.72
GAP 88.95 94.30 84.13 88.49
CMP 39.60 48.57 28.53 35.91
GMP 91.45 94.10 91.20 92.62

1D-TCNFN GMP 93.95 96.03 93.47 94.30
CAP: channel average pooling; GAP: global average pooling; CMP: channel max pooling; GMP: global max 
pooling.
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method was 2.5 percentage points higher than that of the original 1D-CNFN. Thus, the results 
indicated that the proposed 1D-TCNFN outperforms other state-of-the-art deep learning models 
in arrhythmia detection.

4.	 Conclusions

	 We propose a 1D-TCNFN for the detection of 17 types of arrhythmia. The method can detect 
abnormal ECG signals by using a long-term signal segment, and its application can potentially 
reduce the workload of medical staff. The proposed 1D-TCNFN combines convolution layers 
and a neuro-fuzzy network; this network not only automatically extracts features from raw data 
but also reduces the excessive number of parameters resulting from using fully connected layers. 
We used the Taguchi method to optimize the architecture and performance of the 1D-TCNFN. 
The open MIT-BIH Arrhythmia Database was subsequently adopted to evaluate the performance 
of the proposed architecture. The performance of the proposed 1D-TCNFN is superior to various 
state-of-the-art deep learning networks, yielding the accuracy and F1-score of 93.95 and 94.30%, 
respectively. In future research, we intend to port the proposed method to embedded systems for 
edge computing. In addition, we intend to introduce an attention mechanism to improve the 
overall model detection performance for difficult-to-identify ECG signals.
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