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	 Alzheimer’s disease (AD) destroys neurons in the brain, engendering brain atrophy and 
severely compromising brain function. Magnetic resonance imaging (MRI) is widely applied to 
analyze brain degeneration. AD is typically detected by examining specialist-selected features 
of two-dimensional images or region-of-interest features identified by trained classifiers. We 
developed a Taguchi-based three-dimensional convolutional neural network (T-3D-CNN) model 
for detecting AD in magnetic resonance images. CNN parameters are generally obtained 
through trial-and-error methods. To stabilize the CNN diagnostic accuracy, the Taguchi method 
was employed for parameter combination optimization. Obtaining patient data is difficult; thus, 
we performed transfer learning to verify the proposed T-3D-CNN model’s effectiveness by 
using only a small quantity of patient data from various databases. The experimental results 
confirmed that the T-3D-CNN model detected AD from images in the Open Access Series of 
Imaging Studies (OASIS)-2 data set with an accuracy of 99.46%, which was 2.06 percentage 
points higher than that of the original 3D-CNN. After a complete investigation of the OASIS-2 
data set, we selected 10, 30, 60, 80, and 100% of the data from the OASIS-1 data set to verify the 
T-3D-CNN and updated the original network weights through transfer learning; the average 
accuracies were 81.31, 92.88, 95.85, 100, and 100%, respectively.

1.	 Introduction

	 Alzheimer’s disease (AD) is a major public health concern worldwide. This neurodegenerative 
condition destroys brain neurons and induces brain degeneration that causes dementia in adults 
aged over 65 years. Patients with AD experience emotional instability, loss of short-term 
memory, loss of speech, and loss of the ability to perform some activities of daily living. 
Approximately 44 million people worldwide have been tested for AD, and this number may 
increase to 131.5 million by 2050. According to the results of the epidemiological survey of 
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dementia conducted by the Taiwan Alzheimer’s Disease Association (commissioned by Taiwan’s 
Ministry of Health and Welfare)(1) and the demographic data presented by the Ministry of the 
Interior,(2) 3607127 people in Taiwan were aged over 65 years as of the end of December 2019. In 
this population group, 654971 people (18.16%) have mild cognitive impairment (MCI), and 
280783 people (7.78%) have dementia. The individuals with dementia can be further categorized 
into those with very mild dementia (114336 people; 3.17%) and those with severe dementia 
(166506 people; 4.62%). In other words, 1 in 12 people in Taiwan who are aged older than 65 
years has dementia. Among individuals aged over 80 years, 1 in 5 people has dementia. MCI 
marks a period of transition between aging and AD. No cure for AD has been found. Certain 
static factors such as genetics predispose people to this disease. Thus, the early detection of MCI 
is essential such that patients’ conditions can be stabilized and the development of AD can be 
delayed or prevented.
	 The detection of AD and MCI is crucial, and scholars have extensively monitored and 
examined changes in the brain structure of patients with AD. Such examination and monitoring 
processes can be conducted using various imaging modalities such as magnetic resonance 
imaging (MRI), computed tomography, positron emission tomography, and single-photon 
emission computed tomography.(3) MRI has long been the most commonly used imaging 
technique for the analysis and diagnosis of brain degeneration.(4) It can track and present changes 
in the brain, including the atrophy caused by AD. Most studies have applied MRI to explore 
regions of interest (ROIs) in the brain.(5,6) Magnetic resonance images provide stable 
representative features, and the number of calculations can be lowered through feature reduction 
in magnetic resonance images. However, the fixed selection area may limit the feature extraction 
ability of an assessment model and is not beneficial to the detection accuracy.
	 Detecting AD through neuroimaging is extremely challenging. Two main feature extraction 
methods have emerged in those studies. The first method entails extracting features from 
selected ROIs to reduce the number of calculations and express features with high stability. The 
area of abnormality in the brain of a patient with AD may be the same as the ROI preset by 
researchers. However, the independent calculation of features can constrain feature selection. 
The second method involves using the original voxels in magnetic resonance images to 
normalize the intensity of images. Voxels can be employed to obtain information directly from 
images of gray matter, white matter, and cerebrospinal fluid. In voxel-based morphometry, all 
data set images must be three-dimensional (3D). This computational approach is faster than the 
ROI method and is easy to implement.
	 In recent years, many scholars have conducted in-depth research with machine learning/deep 
learning approaches on the diagnosis of dementia. Recognition methods have been developed 
into computer-aided systems, which are used in different types of biomarker sensing imaging to 
diagnose dementia, especially in the application of MRI and positron emission tomography 
(PET) examinations. Convolutional neural networks (CNNs) are widely used in deep learning. 
CNNs have recently become a powerful system of computer-aided diagnosis as well as an 
analytical method. Various CNN-based structures have been employed in the analysis, 
classification, and detection of diseases from medical images. CNN models exhibit superior 
performance to machine learning approaches. Ullah et al.(6) used a CNN to detect AD from a 
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data set of 3D magnetic resonance images. Cheng and Liu(7)used a dual-stream multimodal 
CNN and magnetic resonance image and positron emission tomography image features to 
identify AD. Then, Zhang et al.(8) developed a multimodal model with a modified architecture. 
However, to train a network adequately, a CNN requires a large number of data samples. When 
the number of samples in the data set is excessively small, overfitting occurs. This is because the 
depth of the data set cannot represent the variability of the brain.
	 Because a 3D CNN model is a machine learning model, ensuring that the parameter set is 
optimized is imperative. The Taguchi method is used for parameter optimization. This is an 
engineering method developed by the Japanese scholar Genichi Taguchi and entails the use of 
statistical approaches to control experiments and processes for the dual purpose of improving 
the experiments’ quality and reducing their costs. Through design, preparation, analysis, and 
verification phases, the Taguchi method finds the most suitable combination of factor values 
even if some factors are uncertain. The advantage of this method is that it can provide a complete 
factorial design under experimental limitations. Moreover, the signal-to-noise (S/N) ratio, which 
represents the ratio of controllable factors to uncontrollable factors, is maximized. The Taguchi 
method can enhance the accuracy of experimental results by improving the robustness and 
accuracy of networks. It can be applied to optimization problems in engineering.
	 Privacy issues engender difficulties in the identification and acquisition of medical images. 
Furthermore, labeling and classifying such images constitute time- and labor-intensive 
processes. Transfer learning is a method that leverages the weights of training modes 
implemented in various fields of application and uses a small quantity of data to fine-tune and 
pretrain a model, reducing the training time required by the model itself. Numerous pretrained 
models have been constructed for various image classification tasks in large public databases, 
including LeNet,(9) VGGNet,(10) AlexNet,(11) ResNet,(12) and GoogLeNet.(13) Transfer learning 
using the AlexNet architecture has been employed in various medical imaging applications to 
improve performance. However, when the number of data set images is insufficient, the 
classification effect remains limited, and the use of transfer learning to determine the amount of 
data required for the re-learning of the training model will significantly affect the detection 
accuracy.
	 On the basis of the findings of studies using deep learning in medical image recognition, in 
this study, we propose a CNN model for examining 3D magnetic resonance images of the brain. 
Two experiments were conducted. The first experiment entailed the use of the Taguchi method 
to optimize the 3D CNN model parameters and obtain the optimal combination of parameters 
for the model, yielding a Taguchi-based 3D CNN (T-3D-CNN). The accuracy and stability of the 
architecture were improved. The second experiment involved transfer learning with the 
optimized 3D CNN. Two data sets, Open Access Series of Imaging Studies (OASIS)-1 and 
OASIS-2, were used for transfer learning. Specifically, OASIS-2 was employed as the source 
data set. The 3D CNN model was pretrained entailing network fine-tuning and performance 
testing by using OASIS-1 as the target data.
	 The tasks undertaken in this study are summarized as follows and can be considered 
contributions to the relevant literature: First, a 3D CNN was used to enhance the accuracy of AD 
detection from 3D magnetic resonance images. Second, the Taguchi method was employed to 
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determine the optimal parameter combination for the proposed 3D CNN model, yielding the 
’T-3D-CNN model. Third, transfer learning was performed to improve the detection accuracy of 
the T-3D-CNN model, with only a small quantity of training data being used. Fourth, the 
average accuracy rates of the T-3D-CNN and original 3D CNN models were 99.46 and 97.4%, 
respectively.
	 The remainder of this paper is organized as follows. Section 2 introduces the Taguchi method 
and the transfer learning process of the 3D CNN. Section 3 presents the results of the network 
parameter optimization and experimental analysis of transfer learning and the Taguchi method. 
Conclusions are drawn in Section 4.

2.	 Methods

	 We developed a 3D CNN model for detecting AD from magnetic resonance images. The 
model was trained using the OASIS-2 data set, and the optimal parameter combination was 
identified through the Taguchi method. To improve the stability and performance of the model 
with the parameters, we conducted transfer learning. Specifically, the optimized 3D CNN was 
pretrained to perform transfer learning by using the OASIS-1 data set that was divided into 
several data volumes.

2.1	 Applied 3D CNN model

	 Numerous studies have examined magnetic resonance images through multislice imaging, 
followed by the selection of the required regional features by experts. This method may limit the 
feature learning ability of the network model. Most CNNs are applicable to two-dimensional 
images, but directly conducting feature learning on magnetic resonance images is impossible. 
Therefore, we developed the 3D CNN model to train and learn 3D features.
	 The proposed 3D CNN model has a 5 × 5 × 5 convolution kernel, followed by a 2 × 2 × 2 
pooling layer connected to a 1 × 1 × 1 flat layer. The 2 × 2 × 2 pooling layer consists of fully 
connected layers with 84 nodes and applies the SoftMax function as the activation function for 
classification. Feature extraction can be executed through the basic convolution operation. The 
pooling layer can condense features and reduce the function of the operation, and the numerous 
parameters of the fully connected layer can be used to simulate the processes of nonlinear 
functions. The model applies a 3D convolution kernel to execute convolution operations on the 
3D magnetic resonance images. The 3D pooling layer is subjected to the max pooling operation. 
The network architecture is illustrated in Fig. 1, and the parameters are presented in Table 1.

2.2	 Taguchi method

	 Neural networks typically must undergo numerous iterations before a stable model can be 
derived. However, conducting an excessive number of experiments leads to wasted time and 
increased costs. To mitigate these problems, researchers have designed various methods, and 
some have applied statistical experimental approaches. The Taguchi experimental design 
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method can be divided into four major steps: formulating an experimental plan, establishing a 
Taguchi table, conducting experiments, and analyzing the results. The Taguchi optimization 
technique can be employed to analyze interactions between and among factors such that the 
most stable parameter process can be identified. The flowchart of the Taguchi experimental 
method is presented in Fig. 2. The S/N ratio is considered to determine whether the combinations 
of control factors and levels affect the results. The steps of this method are detailed in the 
following sections.
Step 1. Define the problem
	 Because 3D CNN model parameters are based on past experience, determining whether they 
are appropriate is challenging. In our experiment, we used the Taguchi method to optimize the 
parameters of the proposed 3D CNN model, and the interaction between the optimized 
parameters was analyzed to obtain the optimal combination for improving the stability and 
accuracy of the model.

Fig. 1.	 (Color online) Diagram of 3D convolution operation.

Table 1
Parameters of 3D CNN model.
Layer Image Size Kernel Size Stride Padding Filter 
Input 95 × 75 × 128
Convolution Layer 1 5 × 5 × 5 1 0 6
Relu Layer
MaxPooling Layer 1 2 × 2 × 2 2
Convolution Layer 2 5 × 5 × 5 1 0 16
Relu Layer
MaxPooling Layer 2 2 × 2 × 2 2
Convolution Layer 3 5 × 5 × 5 1 0 28
Relu Layer
MaxPooling Layer 3 2 × 2 × 2 2
Convolution Layer 4 1 × 1 × 1 1 0 120
Relu Layer
MaxPooling Layer 4 2 × 2 × 2 2
FullyConnectedLayer 84
FullyConnectedLayer 2
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Step 2. Determine the parameter levels
	 This step entails selecting the parameters of the convolutional layer to optimize feature 
extraction. In our experiment, two parameters were selected as the improvement factors: the 
convolution kernel and the number of channels in the first, second, and third convolutional 
layers. The total number of factors was eight, and each convolutional layer contained two 
parameters. The level of each factor was determined according to the increase or decrease in the 
number of original parameters. Detailed information on the improvement factors is provided in 
Table 2.
Step 3. Generate an orthogonal table
	 According to the factors and factor levels presented in step 2, a total of 729 (36) experiments 
involving a full factorial design must be conducted. To reduce the number of experiments in this 
study, we used reference degrees of freedom, factors, and factor levels to generate an orthogonal 
table. We selected six level 3 factors and calculated the total degrees of freedom (refer to the L27 
row in Table 3). To increase its reliability, this experiment was repeated three times under the 
same configuration (Table 4). Three types of accuracy rates for each configuration were 
evaluated to calculate the S/N ratio.
Step 4. Calculate the S/N ratio
	 According to the L27 row in the orthogonal table (Table 3; step 3), the accuracy of 27 
combinations could be obtained after the experiments were conducted. The S/N ratio was 
computed with reference to the loss function (larger-the-better, smaller-the-better, and nominal-
the-best). The S/N ratio reflects the variability of quality characteristics and the quality of 
prediction. Herein, the accuracy of the CNN model was examined, and the loss function was 
larger-the-better. The algorithm is shown in Eq. (1), where N is the number of experiments and y 
is the ith accuracy rate.

Fig. 2.	 (Color online) Flowchart of Taguchi experimental method.
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Step 4.1. Generate the S/N ratio diagram of each factor
	 According to the final results, the S/N ratio was calculated and incorporated into the S/N 
ratio response diagram, from which the optimal factor level combination was obtained.
Step 4.2. Generate the variance analysis table	
	 A variance analysis table was established according to the final S/N ratio obtained from each 
experiment.

Table 2
Determined factors and their levels.
No. Factors Level 1 Level 2 Level 3
A Convolution Kernel size 3 5 7
B layer 1 Filter 4 6 12
C Convolution Kernel size 3 5 7
D layer 2 Filter 8 16 32
E Convolution Kernel size 3 5 7
F layer 3 Filter 14 28 56

Table 3
Orthogonal table.
No. Kernel size1 Filter1 Kernel size2 Filter2 Kernel size3 Filter3
1 3 4 3 8 3 14
2 3 4 3 8 5 28
3 3 4 3 8 7 56
4 3 6 5 16 3 14
5 3 6 5 16 5 28
6 3 6 5 16 7 56
7 3 12 7 32 3 14
8 3 12 7 32 5 28
9 3 12 7 32 7 56

10 5 4 5 32 3 28
11 5 4 5 32 5 56
12 5 4 5 32 7 14
13 5 6 7 8 3 28
14 5 6 7 8 5 56
15 5 6 7 8 7 14
16 5 12 3 16 3 28
17 5 12 3 16 5 56
18 5 12 3 16 7 14
19 7 4 7 16 3 56
20 7 4 7 16 5 14
21 7 4 7 16 7 28
22 7 6 3 32 3 56
23 7 6 3 32 5 14
24 7 6 3 32 7 28
25 7 6 5 8 3 56
26 7 12 5 8 5 14
27 7 12 5 8 7 28
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2.3	 Transfer learning

	 Transfer learning, which is effective under conditions with an insufficient quantity of data, 
can improve the versatility of a model. When the original data set is close to the target data set, 
transfer learning can enhance the model classification performance. By applying the knowledge 
learned in one field to a new field and leveraging the similarity between data sets, one can apply 
transfer learning in deep learning. In transfer learning, first, a model can be pretrained using the 
original database, the weight of the pretrained model can be retained, and all the parameters of 
the model for the target data set can be fine-tuned. Next, the retained weight of the pretrained 
model can be applied to train the model by employing the target data set; thus, the deep features 
of the target data set can be combined to identify the target, thereby reducing the time required 
to train a network from scratch. In this study, the OASIS-2 data set was considered the original 
data set, and the constructed framework was used for pretraining. The OASIS-1 data set was 
used as the target data set for transfer learning. Subsequently, 80% of the original data set was 
divided into a training set and 20% into a test set for pretraining. The OASIS-1 data set was split 
into five distinct data volumes (10, 30, 60, 80, and 100%) for transfer learning (Table 5).

Table 4
Experimental combinations.

Orthogonal table Row Max. no. of parameters Max. row of level
2 3 4 5

L4 4 3 3 – – –
L8 8 7 7 – – –
L9 9 4 – 4 – –
L12 12 11 11 – – –
L16 16 15 15 – – –
L̓ 16 16 5 – – 5 –
L18 18 8 1 7 – –
L25 25 6 – – – 6
L27 27 13 – 13 – –
L32 32 31 31 – – –
L̓ 32 32 10 1 – 9 –
L36 36 23 11 12 – –
L̓ 36 36 16 3 13 – –
L50 50 12 1 – – 11
L54 54 26 1 25 – –
L64 64 63 63 – – –
L̓ 64 64 21 – – 21 –
L81 81 40 – 40 – –

Table 5
Training data for transfer learning.
Dataset Training data (%)

OASIS-1

10
30
60
80

100
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3.	 Results

	 The proposed 3D CNN model was assessed to determine its accuracy in detecting AD. In 
this section, we first introduce the data sets applied in the experiments and then describe the two 
experiments. Next, we explain how the Taguchi method was used for parameter combination 
optimization and applied to the detection of AD from medical images.

3.1	 Data sets

	 The OASIS-1 data set (Table 6)(14) and OASIS-2 data set (Table 7)(15) were used for 3D CNN 
model training and testing, respectively. The OASIS-1 data set contains transverse magnetic 
resonance images of 416 individuals aged 18–90 years, with AD detection outcomes classified as 
either dementia positive or dementia negative. The OASIS-2 data set contains transverse 
magnetic resonance images of 150 individuals aged 60–96 years. It has the same detection 
outcomes but also contains an additional category: the conversion of dementia negative to 
dementia positive.
	 Each individual whose data are in either data set must have undergone at least two MRI 
examinations. Overall, 434 and 373 MRI examinations were conducted on the individuals whose 
data are in the OASIS-1 and OASIS-2 data sets, respectively. For each MRI examination, three 
or four separately T1-weighted magnetic resonance images were obtained. Of the 416 individuals 
whose information is in the OASIS-1 data set, 316 were determined to have AD, with the 
remaining 100 not having AD. Of the 416 individuals whose information is in the OASIS-2 data 
set, 72 were determined to have AD, with 64 not having AD. The detection outcome of the 
remaining 14 people changed from AD negative to AD positive within 1 year.
	 The original 3D magnetic resonance images had dimensions of 256 × 256 × 128 pixels. For 
importation into the 3D CNN model as input images, they were scaled to 95 × 75 × 128 pixels. 
Figures 3 and 4 depict sample magnetic resonance images from the OASIS-1 and OASIS-2 data 
sets, respectively.

Table 6
Summary of classified data from OASIS-1 data set.
Class Subject Number
Nondemented 316 1301
Demented 100 387
Total 416 1688

Table 7
Summary of classified data from OASIS-2 data set.
Class Subject Number
Nondemented 72 692
Demented 64 538
Total 136 1220

Fig. 3.	 Magnetic resonance images from OASIS-1 data set.
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3.2	 Parameter combination optimization based on Taguchi method

	 On the basis of the Taguchi experimental method, we conducted experiments to determine 
the optimal combination of the 3D CNN model parameters presented in Table 1 by using the 
established orthogonal table (Table 3). Accordingly, a total of 27 parameter combinations were 
determined; each combination involved six factors. Our 3D CNN model was tested according to 
the combinations. For the training conducted using the OASIS-2 data set, the learning rate was 
initially set to 0.0001. Owing to insufficient hardware calculations, the maximum batch size was 
set to 7, and the maximum number of training epochs was set to 10; moreover, a stochastic 
variable, gradient descent, was added as an optimizer. The experiment was performed on a 
personal computer with an NVIDIA GeForce GTX 1660 Ti graphics card and 24 GB of RAM.
	 To increase reliability, three random training processes were conducted in each group of 
experiments to obtain three accuracy rates, and these rates were averaged to derive the average 
accuracy rate Yavg. The experimental results are listed in Table 8. The detection accuracy was 
calculated using the larger-the-better loss function to obtain the S/N ratio.
	 The average S/N ratios calculated for the various factor levels are presented in Table 9, and 
the accuracy rates derived for the various factors (according to the S/N ratios) are displayed in 
Fig. 5. In these main effect plots, a higher S/N ratio corresponds to a more stable quality; thus, 
our goal was to determine the optimal parameter combination at the highest node of each plot. 
These were Filter1, Kernel size3, Kernel size2, and Filter3.
	 Table 10 presents the results of the analysis of variance on each factor. The degree of freedom, 
the sum of squares, mean square, and contribution rate were calculated for each factor. Filter 1 
was determined to have the largest contribution, signifying that Filter 1 parameters would have 
the most considerable effect on the model.
	 We conducted the final experiment according to the final parameter combination obtained 
from the quality characteristics presented in Table 10. Three random training processes were 
performed to derive the corresponding accuracy rates, and these rates were averaged to derive 
the average accuracy, as shown in Table 11. In this experiment, we compare our model with 
other models such as AlexNet,(16) VGG16,(16) GoogleNet,(16) ResNet18,(16) Bagged,(17) and 
3D-CNN.(18) Table 12 presents a comparison of the results achieved using our model with those 
achieved using other models. As shown in Table 12, the proposed 3D CNN and T-3D-CNN 
detected AD with accuracies of 97.4 and 99.46%, respectively. The experimental results 
confirmed that the T-3D-CNN model detected AD from images in the Open Access Series of 

Fig. 4.	 Magnetic resonance images from OASIS-2 data set.
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Imaging Studies (OASIS)-2 data set with an accuracy of 99.46%, which was 2.06 percentage 
points higher than that of the original 3D-CNN.

3.3	 Transfer learning validation

	 From the OASIS-1 and OASIS-2 data sets, 1,351 and 976 training images were selected, 
respectively. The two data sets have completely different structures; specifically, the OASIS-1 

Table 8
Taguchi experimental table and results.
No. Kernel size1 Filter1 Kernel size2 Filter2 Kernel size3 Filter3 Yavg (%) SN ratio
1 3 4 3 8 3 14 99.33 −0.059
2 3 4 3 8 5 28 98.78 −0.107
3 3 4 3 8 7 56 98.92 −0.096
4 3 6 5 16 3 14 99.05 −0.083
5 3 6 5 16 5 28 98.91 −0.097
6 3 6 5 16 7 56 99.59 −0.036
7 3 12 7 32 3 14 98.51 −0.133
8 3 12 7 32 5 28 97.97 −0.179
9 3 12 7 32 7 56 98.51 −0.132

10 5 4 5 32 3 28 98.65 −0.118
11 5 4 5 32 5 56 98.64 −0.119
12 5 4 5 32 7 14 99.59 −0.036
13 5 6 7 8 3 28 98.78 −0.108
14 5 6 7 8 5 56 98.51 −0.131
15 5 6 7 8 7 14 98.51 −0.132
16 5 12 3 16 3 28 98.51 −0.133
17 5 12 3 16 5 56 99.05 −0.083
18 5 12 3 16 7 14 99.19 −0.071
19 7 4 7 16 3 56 99.33 −0.059
20 7 4 7 16 5 14 98.78 −0.107
21 7 4 7 16 7 28 99.19 −0.073
22 7 6 3 32 3 56 99.46 −0.047
23 7 6 3 32 5 14 99.05 −0.084
24 7 6 3 32 7 28 98.78 −0.108
25 7 12 5 8 3 56 99.19 −0.071
26 7 12 5 8 5 14 97.96 −0.179
27 7 12 5 8 7 28 98.51 −0.133

Table 9
Average S/N ratio of each factor level.

Factors
Level Kernel size1(A) Filter1(B) Kernel size2(C) Filter2(D) Kernel size3(E) Filter3(F)
1 −0.102 −0.086 −0.086 −0.111 −0.093 −0.098
2 −0.103 −0.090 −0.096 −0.082 −0.121 −0.116
3 −0.096 −0.122 −0.117 −0.105 −0.085 −0.085
Delta 0.007 0.037 0.031 0.029 0.035 0.031
Rank 5 1 3 4 2 3
Best level 3 1 1 2 3 3
Optimal parameter 7 4 3 16 7 56
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data set contains images collected from vertical MRI systems, whereas the OASIS-2 data set 
contains images obtained from horizontal MRI systems.
	 We pretrained our 3D CNN model by using the OASIS-2 data set and verified its performance 
by using the OASIS-1 data set accordingly. We increased the quantity of training data in the 
OASIS-1 data set for use in the pretrained framework, and we incorporated an additional 
training set from the OASIS-2 data set. Directly using the OASIS-2 data set to pretrain the model 

Table 10
Results of analysis of variance on factors.

Variance source Degree of 
freedom

Square 
variance

Mean square 
error F0 Contribution 

rate (%)
Square 

sum Df Mean 
square sum

Kernel size1 2 0.0003 0.0001 0.0918 1.00 0.0376 24 0.0016
Filter1 2 0.0072 0.0036 2.7819 24.86 0.0310 24 0.0013
Kernel size2 2 0.0065 0.0033 2.3364 22.68 0.0336 24 0.0014
Filter2 2 0.0042 0.0021 1.4760 14.47 0.0340 24 0.0014
Kernel size3 2 0.0063 0.0031 2.3325 21.80 0.0324 24 0.0013
Filter3 2 0.0044 0.0022 1.5588 15.19 0.0338 24 0.0014
Sum 26 0.0289 0.0011 100 0.2023

Fig. 5.	 (Color online) Main effect plots.

Table 11
Optimal parameter combination.

Level Kernel 
size1 Filter1 Kernel 

size2 Filter2 Kernel 
size3 Filter3 Ex. 1 

accuracy
Ex. 2 

accuracy
Ex. 3 

accuracy
Average 
accuracy

7 4 3 16 7 56 99.59 99.59 99.19 99.46

Table 12
Comparison of accuracy among various 3D CNN models.
AlexNet(16) 97.53%
VGG16(16) 94.75%
GoogleNet(16) 91.5%
ResNet18(16) 86.53%
Bagged(17) 92.22%
3D-CNN(18) 96.33%

Proposed method 3D-CNN 97.4%
T-3D-CNN 99.46%
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and the OASIS-1 data set to verify the model would not be effective. Therefore, we trained the 
3D CNN model by increasing the volume of data from the OASIS-1 data set by 10, 30, 60, 80, 
and 100%, and the detection accuracy rates were 81.31, 92.88, 95.85, 100, and 100%, respectively 
(Table 13 and Fig. 6).

4.	 Conclusions

	 In this study, we developed a 3D CNN model for AD detection. The model’s parameters were 
optimized through transfer learning and employed to train the model to detect targets in 3D 
magnetic resonance images. Transfer learning was conducted to stabilize our 3D-CNN model 
such that the universality of the architecture could be enhanced. We used the Taguchi method to 
optimize the model parameters and improve its accuracy. Through the calculation of the S/N 
ratio, the parameter combination was optimized, and the accuracy of the model was enhanced. 
The 3D CNN and T-3D-CNN detected AD with accuracies of 97.4 and 99.46%, respectively. We 
performed transfer learning to validate the model using the OASIS-1 and OASIS-2 data sets. The 

Fig. 6.	 (Color online) Training percentages and detection accuracy achieved using OASIS-1 data set.

Table 13
Accuracy of fine-tuned data.
Data set Training data Testing data Avg. accuracy (%) Avg. training time
OASIS-2 976 244

OASIS-1

10% 135 337 81.31 15 : 39
30% 405 337 92.88 25 : 10
60% 811 337 95.85 40 : 20
80% 1080 337 100 53 : 12

100% 1351 337 100 58 : 47
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same recognition target and similar data types were considered; the OASIS-2 data set was used 
to pretrain the model, and the OASIS-1 data set, for which data volumes of 10, 30, 60, 80, and 
100% were used, was used to verify the model. The accuracy rates achieved when the 10, 30, 60, 
80, and 100% data volumes were used reached 81.31, 92.88, 95.85, 100, and 100%, respectively.
	 In future studies, we will explore the use of incremental 3D images to solve the problem of 
limited data and will apply the 3D CNN model to a real-time detection system for AD. Such a 
system is expected to recognize AD symptoms or precursors thereof such that patients can 
receive treatment as soon as possible. Applying the 3D CNN model requires a large number of 
calculations. Therefore, in the future, ROI feature extraction can be used to reduce the number of 
parameters. Thus, the cost, time, and amount of calculation the 3D CNN is involved can be 
reduced.
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