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	 Intrusion detection has become a crucial issue due to an increase in cyberattacks. In most 
studies on this topic, intrusion detection performance has been found to be strongly related to the 
feature extraction and selection preprocess. However, there has been less research on problems 
or solutions related to the attributes of unequal metrics. Recently, deep-learning-based schemes 
have shown strong performance in image classification tasks without feature preprocessing. 
Therefore, in this study, we discuss the conversion of packet data into images for use in deep 
learning schemes with effective data preprocesses used to process the attributes of unequal 
metrics. A standard deviation standardization process is proposed to process the attributes of 
unequal metrics, which is followed by a data quantization process. Then, zigzag coding and the 
inverse discrete cosine transform are employed to convert the data into attribute images, which 
are used as the inputs for a convolutional neural network model. Intrusion detection is then 
achieved using the trained model. The experimental results demonstrate that the proposed 
scheme has reliable and efficient intrusion detection capability with a recall rate exceeding 94%. 
Meanwhile, packet attributes represented by 16 × 16 images provide about the same intrusion 
detection performance as that for 32 × 32 images. In summary, computational complexity can be 
reduced and performance can be maintained when using small images.

1.	 Introduction

	 The internet has now permeated every level of society, which has made life more convenient 
by providing services such as online shopping, instant messaging, and web blogs. However, a 
high level of dependence on the internet may increase exposure to problems such as spam, 
malicious attacks, and illegal software. Various types of cyberattacks have become more 
prevalent in recent years, so internet security has become a popular research topic.
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	 Illegally acquiring data is a frequent purpose of cyberattacks, and the tactics used for 
malicious attacks have become increasingly diverse and radical. SonicWall Capture Advanced 
Threat Protection Service reported hundreds of thousands of unexpected cyberattacks in 2018 
and an increase of 118% as compared with the previous year.(1) The growth of the internet 
through the use of portable equipment in recent years has further increased the number of 
malicious software attacks. Intrusion detection technologies have been widely used for resolving 
network security issues to effectively prevent malicious attacks on information systems. Some 
institutions have placed great importance on applying robust intrusion detection systems to 
avoid such attempts or unauthorized access.
	 Intrusion detection systems can be divided into host-based intrusion detection systems 
(HIDS)(2) and network-based intrusion detection systems (NIDS) according to the location 
where they are set up. They can also be categorized into two types according to the technologies 
used for analysis: misuse intrusion detection (also named signature-based detection or rule-
based detection) and anomaly intrusion detection.(3,4)

	 Numerous studies have proposed the use of machine learning for intrusion detection. The 
classification performance of an intrusion detection system is strongly related to the feature 
extraction and selection results.(5) Machine learning comprises feature extraction or selection, 
followed by classification.(6,7) Initially, feature extraction and selection processes were aimed at 
reducing the number of redundant or irrelevant features to improve the detection speed and 
classification process during subsequent procedures.(8)

	 Machine learning is a supervised learning scheme, where each packet of data corresponds to 
a category, with the category assigned during the training process. Common classifiers such as 
rule-based classifiers as well as Bayesian networks (BNs), decision trees (DTs), the k-nearest 
neighbor algorithm (KNN), genetic algorithms (GAs), support vector machines (SVMs), and 
neural networks such as artificial neural networks (ANNs) are also commonly applied in the 
intrusion detection classification process.(9,10) However, inadequate feature selection or 
extraction affects the classification performance of the models in the above schemes.
	 Deep learning has been widely examined in various fields including image recognition and 
speech recognition using convolutional neural networks (CNNs), which have demonstrated good 
performance in image classification tasks,(11) and recurrent neural networks (RNNs), which are 
used for strongly time-related features.(12) Deep-learning-based methods exhibit high prediction 
and classification performances since they can automatically learn nonlinearly correlated 
features from the original data without advance feature extraction.(13) Most traditional machine 
learning methods used in intrusion detection systems rely on feature selection rather than the 
original data.
	 It has been revealed that a suitable standardization process can effectively improve 
classification accuracy.(14) However, although all features are usually applied for standardization 
and the subsequent quantization process, not all features have the same metrics and ranges, i.e., 
some features are discrete values of 0 and 1 and some have continuous values with different 
ranges. Standardization and quantization of all features of data cause data distortion. 
Nevertheless, this problem has seldom been raised, nor have solutions to the problem of unequal 
metrics in each data attribute been reported. Therefore, to solve this problem, in this study, we 
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propose a standardization approach based on each feature rather than all features to avoid data 
distortion. 
	 Although CNNs have been successfully applied to a variety of classification problems, there 
have been few studies on their use in intrusion detection. On the basis of the successful use of 
CNNs in image classification, in this study, packet attributes are converted into feature images, 
and image classification using a CNN-based model is performed for intrusion detection. In 
previous research, importance has been attached to preprocessing of the network packet data. 
Hence, in this study, data preprocesses, including the standardization of each feature, 
quantization, and the inverse discrete cosine transform (IDCT), are applied before converting 
packet data into images.
	 The rest of this paper is organized as follows. Section 2 presents the dataset used in this work, 
the proposed preprocess, and the image conversion. Section 3 introduces the deep learning 
model utilized for intrusion detection. Experimental results and evaluations are provided in 
Sect. 4. Finally, the conclusions of this study are given in Sect. 5.

2.	 Data Preprocessing

	 Data preprocessing is an indispensable process in research because the way in which data are 
processed directly affects the classification performance.(15) In this study, standard deviation 
standardization is performed on individual features to avoid feature distortion, after which the 
standardized feature is quantized in the range from 0 to 255. Subsequently, zigzag coding is 
applied to the quantized data. The zigzag codes are regarded as the spatial frequency distribution 
of the packet data feature images. The IDCT is then utilized to transform the spatial frequency 
spectrum into the spatial domain image. The spatial domain image then becomes the input for 
the subsequent CNN model.
	 In this study, the KDDCUP’99 dataset is used for intrusion detection. This dataset includes 
4898431 packet records, each packet containing 41 attributes (distributions) and a target class 
feature. The network packet has been divided into four main types of attacks: probing, denial of 
service (DoS), user to root (U2R), and remote to local (R2L).(16) DoS, probing, U2R, and R2L 
attacks are classified as abnormal network packets.(17)

	 Data preprocessing is used to convert the original data into an appropriate format for 
subsequent analysis and use.(18) The KDDCUP’99 dataset contains both continuous and discrete 
attributes; among the continuous attributes, every measurement metric is different. If the import 
data are not subjected to appropriate processes or schedules in advance, the feature extraction 
process may be ineffective when using the CNN training model.
	 The preprocessing is divided into four steps: conversion to numerical data, data 
standardization, data quantization, and zigzag coding and image conversion. The flow of the 
proposed preprocess is shown in Fig. 1.
•	� Conversion to numerical data: One-hot encoding is used in machine learning as a method to 

quantify categorical data.(19) It is applied to transform literal data into numerical data in this 
study, for example, the protocol type “TCP” is transformed to “3”.



2394	 Sensors and Materials, Vol. 34, No. 6 (2022)

•	� Data standardization: The standard deviation is standardized on the basis of each packet 
attribute using Eqs. (1) and (2), where kX  is the average value of the kth attribute, Sk is the 
mean square error of the kth attribute, and Xik is the kth attribute in the ith packet data record. 
The standardization of each feature of the packet data record is expressed by Eq. (3).

•	� Data quantization: The data quantization process is expressed by Eq. (4), where X and X * are 
the values to be mapped and the mapped attribute values, and min and max are the minimum 
and maximum values in each attribute, respectively. Each attribute is quantized to values 
ranging from 0 to N, where N is set to 255 in this work.
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•	� Image conversion: Although 41 packet attributes can be converted into a 7 × 7 image, the 
input image should be large enough to set all attributes in the lower-frequency part, such as a 
16 × 16 or 32 × 32 image. This conversion of 41 packet attributes into a larger image requires 
data padding, i.e., in addition to the 41 characteristic attributes of each packet, the other data 
elements are padded with zeros, indicating no data. The zigzag arrangement method is used 
as the data encoding scheme. From the point of the image domain, the changes in the lower-
frequency part are much clearer than those in the higher-frequency part in the spatial 
frequency domain of an image. Therefore, the zigzag arrangement operation concentrates 

Fig. 1.	 (Color online) Flow of the enhanced data preprocess.
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data in the upper left corner, which has a relatively low spatial frequency in the frequency 
domain. Figure 2 gives an example of the coding of data in the form of a zigzag. Moreover, 
the frequency domain map is obtained by the discrete cosine transform (DCT) of an image.(20) 
The frequency domain map of the zigzag arrangement in Fig. 2 is shown in Fig. 3. An IDCT 
is required to convert the frequency domain map back to a grayscale image. The image 
yielded from the IDCT is shown in Fig. 4, which is the input image for the CNN model.

3.	 Architecture of Deep Learning 

	 In this work, a deep-learning-based network is applied as an intrusion detection system, the 
architecture of which is shown in Fig. 5. The architecture consists of a CNN and a fully 
connected neural network. The CNN includes two convolution layers, and each layer is 
associated with a max-pooling layer. The kernel size of both convolutional layers is 3 × 3 and the 
stride is 2. The fully connected network includes an input layer, two hidden layers, and an output 
layer. The input layer has 256 or 1024 neurons depending on the size of the packet attribute 
image, and the hidden layers have 128 and 32 neurons. The output layer includes two neurons, 
which indicate whether the input packets are classified as normal or abnormal packets.

Fig. 2.	 (Color online) Schematic diagram of zigzag data arrangement.

Fig. 3.	 (Color online) Example of a resulting map of 
the zigzag arrangement.

Fig. 4.	 (Color online) Example of a packet attribute 
image.
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4.	 Experimental Results and Evaluations

	 The kddcup.data_10_percent.gz file was used in our experiment as the experimental training 
and test samples. This file contained 10% of the KDDCUP’99 data (494,021 connection records 
in total), where 70% of the records were training samples and 30% of the records were test 
samples. Intrusion detection was performed to predict whether the packets were associated with 
abnormal activities. A true positive was defined as a network packet predicted by the classifier 
to be abnormal when it was indeed an abnormal network packet, as shown in Table 1.
	 Additionally, the precision rate, recall rate, and accuracy were used to evaluate the detection 
performance of the proposed scheme. The precision rate was used to evaluate the ability to 
detect abnormal network packets. The recall rate represents the model’s ability to identify 
abnormal packets. The accuracy was used to evaluate the performance of the classifier as a 
whole. These three performance metrics are given by Eqs. (5)–(7). Among these metrics, the 
recall rate was shown to be crucial for network security. In other words, a high recall rate 
indicates that abnormal packets can be blocked to prevent intrusion into the system.

	 TPPrecision
TP FP

=
+

	 (5)

	 TPRecall
TP FN

=
+

	 (6)

	 TP TNAccuracy
TP FP TN FN

+
=

+ + +
	 (7)

	 The number of epochs was set to 2000, the learning rate was set to 0.001, and the batch size 
was set to 256 and 16000 for the training and testing phases, respectively. Two sizes of the packet 

Fig. 5.	 (Color online) Architecture used for deep learning.
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attribute image were tested (16 × 16 and 32 × 32 pixels), and for both sizes, each image was 
either subjected to a standardization process based on each packet attribute (CASE_1) or not 
subjected to the process (CASE_2). Accordingly, the input layer of the fully connected neural 
network had 256 and 1024 neurons for the smaller and larger images, respectively, followed by a 
layer with 128 neurons and a hidden layer with 32 neurons.
	 Figures 6 and 7 show the accuracy for both cases with the 16 × 16 and 32 × 32 images, 
respectively, during the training phase. Figures 8 and 9 show the loss values for both cases with 
the 16 × 16 and 32 × 32 images, respectively, during the training phase.
	 The confusion matrices of the testing results based on the evaluation metrics shown in Table 
1 are shown in Tables 2–5. The values in each table are the average results of 10 tests. The test 
results for the precision rate, recall rate, and accuracy of the 16 × 16 and 32 × 32 images are 
listed in Tables 6 and 7, respectively. The average, maximum, and minimum values are the 
results of 10 tests. As shown in Tables 6 and 7, recall rates of approximately 94% were obtained, 
indicating that 94% of the abnormal network packets were detected by the proposed classifier, 
implying that network security was maintained. Packet attributes represented by the 16 × 16 and 
32 × 32 images yielded almost the same results, indicating that the abnormal packet detection 
performance was maintained using the 16 × 16 attribute images. In other words, detection 
performance could be maintained by using small images, demonstrating that the amount of 
packet data and the computational complexity can also be reduced. Furthermore, using the 
proposed standard deviation standardization in the preprocessing yielded higher recall rates than 
those when using conventional standardization.

Table 1
Evaluation in intrusion detection.

Prediction
Abnormal Normal

Actual Abnormal True positive (TP) False negative (FN)
Normal False positive (FP) True negative (TN)

(a) (b)
Fig. 6.	 (Color online) Accuracy of (a) CASE_1 and (b) CASE_2 for 16 × 16 images.

Fig. 7.	 (Color online) Accuracy of (a) CASE_1 and (b) CASE_2 for 32 × 32 images.
(a) (b)



2398	 Sensors and Materials, Vol. 34, No. 6 (2022)

Table 2
(Color online) Confusion matrix for 16 × 16 images (CASE_1).

16 × 16 CASE_1 Prediction
Abnormal Normal

Actual Abnormal 10366 (TP) 623 (FN)
Normal 2539 (FP) 2472 (TN)

Table 3
Confusion matrix for 16 × 16 images (CASE_2).

16 × 16 CASE_2 Prediction
Abnormal Normal

Actual Abnormal 10159 (TP) 621 (FN)
Normal 2513 (FP) 2707 (TN)

Table 4
(Color online) Confusion matrix for 32 × 32 images (CASE_1).

32 × 32 CASE_1 Prediction
Abnormal Normal

Actual Abnormal 10382 (TP) 617 (FN)
Normal 2528 (FP) 2473 (TN)

Table 5
Confusion matrix for 32 × 32 images (CASE_2).

32 × 32 CASE_2 Prediction
Abnormal Normal

Actual Abnormal 10119 (TP) 619 (FN)
Normal 2509 (FP) 2753 (TN)

(a)

(a)

(b)

(b)

Fig. 8.	 (Color online) Loss values of (a) CASE_1 and (b) CASE_2 for 16 × 16 images.

Fig. 9.	 (Color online) Loss values of (a) CASE_1 and (b) CASE_2 for 32 × 32 images.
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5.	 Conclusions

	 Feature extraction and selection are difficult to achieve in the field of intrusion detection. 
Deep-learning-based schemes have been shown to have good performance in image 
classification tasks without prior feature extraction. In this study, we adopted a CNN-based deep 
learning scheme for intrusion detection, in which network packet data is are converted into 
images by using the proposed effective data preprocesses to improve intrusion detection 
efficiency. We also proposed a standard deviation standardization process based on each feature 
rather than all features to avoid distortion, which is followed by a data quantization process. 
Then, zigzag coding and the IDCT are applied to convert the data into feature images, which are 
input into the CNN for classification.
	 The experimental results showed that the proposed scheme with the data preprocessing 
method is effective in identifying abnormal network packets, and recall rates exceeding 94% 
were obtained. In other words, more than 94% of abnormal packets can be detected, and security 
is maintained when using the proposed scheme. Moreover, the proposed standard deviation 
standardization method (CASE_1) yielded higher recall rates than the conventional 
standardization process (CASE_2). Packet attributes were represented by feature images of two 
sizes, 16 × 16 and 32 × 32. These images yielded approximately the same intrusion detection 
performance. Therefore, computation complexity can be reduced by using small images without 
adversely affecting the detection performance

Table 6
(Color online) Experimental results for 16 × 16 images.

Precision rate (%) Recall rate (%) Accuracy (%)
CASE_1

Average 80.325 94.331 80.238
Minimum 79.901 94.124 79.438
Maximum 81.140 94.642 81.300

CASE_2
Average 80.169 94.239 80.413
Minimum 79.762 94.039 79.025
Maximum 80.361 94.430 80.956

Table 7
(Color online) Experimental results for 32 × 32 images.

Precision rate (%) Recall rate (%) Accuracy (%)
CASE_1

Average 80.418 94.390 80.344
Minimum 79.749 94.183 79.695
Maximum 81.039 94.526 81.327

CASE_2
Average 80.131 94.235 80.450
Minimum 79.506 93.910 79.706
Maximum 80.548 94.486 80.950
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