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	 To solve the problem of estimating the number of sources when an antenna array is used for 
signal reception, an eigenvalue quadratic diagonal loading technique is proposed. The proposed 
method is applicable under the condition of the proportional relationship between the number of 
antenna elements and that of snapshots, and whether the received signals are mixed with white 
Gaussian or colored noise is unknown. The method we proposed belongs to an important area of 
antenna array signal processing in the field of sensor technology. Firstly, the covariance matrix 
of received signals is eigenvalue-decomposed. Secondly, eigenvalues are loaded diagonally. The 
first diagonal loading value is taken as the arithmetic average of all eigenvalues, and the original 
eigenvalues and diagonal loading value are added to replace the original eigenvalues. The 
quadratic diagonal loading formula is devised to carry out the quadratic diagonal loading on the 
eigenvalues immediately after the first diagonal loading. Finally, the information theoretic 
criterion and random matrix theory methods are chosen to combine with the proposed method to 
estimate the number of sources. The method is validated by simulation experiments. By 
combining the proposed method with the existing information theoretic criterion methods, the 
proposed method can be suitable for the general asymptotic regime with the same number of 
antenna elements and snapshots in a white Gaussian or colored noise environment. The 
application range of the random matrix theory methods is extended by the proposed method, so 
that it can be applied to the colored noise environment.

1.	 Introduction

	 The estimation of number of sources has important applications in many fields, such as 
phased array radar,(1,2) brain imaging,(3) speech signal separation,(4) and the direction of arrival 
(DOA) estimation.(5)  For example, as to the problem of DOA estimation, most of the algorithms 
need the number of sources as an input parameter. In multiple-input multiple-output (MIMO) 
radar signal processing, multitarget parameter estimation and localization are hot research 
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fields. However, their prerequisite is to detect the number of targets in a certain noise 
environment. In the domain of speech signal separation by blind source separation methods, the 
correct estimation of the number of persons is crucial for separation effects. 
	 The methods for estimating the number of sources are essentially based on the statistical 
analysis theory of observed data and their moment functions. For example, the hypothesis 
testing and information theoretic criterion (ITC) methods, which mainly use the statistical 
distribution of observed data and the statistics of sample eigenvalues,(6) are commonly used for 
estimating the number of sources. At present, estimation methods are mainly based on the 
classical asymptotic system, whose dimension of the observed data matrix is fixed and the 
number of snapshots tends to be infinite. These methods are suitable for small-scale array 
signals whose sample number is much larger than that of antenna elements.(7)

	 However, in large-scale sensor arrays such as phased array radar and MIMO systems, owing 
to the limitation of data storage space and the real-time requirement of signal processing, it is 
often difficult for the observed data to meet the condition that the number of snapshots is much 
larger than that of elements, which usually belongs to high-dimensional limited or even small 
sampling data. The number of snapshots is of the same order of magnitude as that of elements, or 
even less than the number of elements. As to large-scale array observed data, the proportional 
relationship between the number of snapshots and that of elements often does not meet the 
requirements of the classical statistical theory. Therefore, the emergence of a large-scale array 
raises new challenges to classical estimation methods of the number of sources.(8,9)

	 At present, among the estimation methods of the number of sources under the classical 
asymptotic system, hypothesis testing methods include spherical test(10) and eigenvalue 
detection,(11) which are mainly used to construct the observation statistics for hypothesis testing 
and to set the decision threshold by using the statistical distributions law of sample eigenvalues. 
ITC methods include Akaike information criterion (AIC),(12) Bayesian information criterion 
(BIC),(13) minimum description length (MDL),(14) and predictive description length (PDL).(15) 
The observed data are Gaussian distributions, which establish a criterion for estimating the 
number of sources according to the likelihood function of the joint probability distribution of the 
observed data. The expression of estimating the number of sources is a function of the sample 
eigenvalues. These methods are suitable for a white Gaussian noise environment. In the classical 
asymptotic system, the main methods for estimating the number of sources in colored noise are 
the Gerschgorin circle method(16) and ITC methods based on diagonal loading,(2,17) but these 
methods are not suitable for large-scale arrays.
	 Estimation of the number of sources in the general asymptotic regime is mainly based on the 
random matrix theory (RMT), including the RMT-AIC method,(18) B. Nadler-AIC (BN-AIC) 
method,(19) BIC-variant method,(20) linear shrinkage-MDL (LS-MDL) method,(21) and the 
method based on a spike model,(22) which are applicable when the number of elements is less 
than that of snapshots. For the estimation methods based on the spherical test and corrected 
Rao’s score test,(22) they are applicable when the number of elements is more than, less than or 
equal to the number of snapshots. All these methods are suitable not only for estimating the 
number of sources in the general asymptotic regime, but also for the classical asymptotic system. 
However, these methods are only applicable to a white Gaussian noise environment, and they fail 
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in a colored noise environment.
	 In practice, the signals received by the array antenna contain complex spatial colored noises. 
In the colored noise environment, the noise eigenvalues of the covariance matrix of the received 
signals will become very divergent, and the noise eigenvalues will not vibrate near the noise 
power as they do in white Gaussian noise. This result caused by colored noise will invalidate 
various algorithms for estimating the number of sources using hypothesis testing and ITC 
methods. The estimation method of the number of sources based on the Gerschgorin theorem 
and the methods based on eigenvalue diagonal loading combined with ITC methods can only be 
applied to the classical asymptotic system, that is, the relationship between the number of 
antenna elements, M, and that of signal snapshots, N, is M fixed and /  1 M N� . In the following, 
M denotes the number of antenna elements, which is also the dimension of observed signals X(t). 
N denotes the number of snapshots of signals. In the general asymptotic regime, that is, the 
relationship between the number of antenna elements, M, and that of snapshots, N, is that M and 
N tend to infinity at the same rate, i. e., ( ),  and / 0,M N M N c→∞ → ∈ ∞ . A new estimation 
method based on the Gerschgorin circle transform and generalized Bayesian information 
criterion is devised,(23) in the case that the observed signals are overlapped with colored noise, 
and the number of elements compared with that of snapshots meets the requirement of the 
general asymptotic regime. However, the estimation method for the number of sources suitable 
for a colored noise environment is insufficient.
	 In such a case, an eigenvalue quadratic diagonal loading method for estimating the number of 
sources is developed in this study. By combining the proposed method with the ITC methods, 
the ITC methods are extended to general asymptotic regimes, and the noise environment can be 
white Gaussian or colored noise. At the same time, this method extends the application of the 
RMT methods, which can be applied to colored noise. Compared with the existing eigenvalue 
diagonal loading methods, the proposed method adopts the eigenvalue quadratic diagonal 
loading, which is equivalent to the second correction of the eigenvalue distribution, and can 
realize the estimation of the number of sources more robustly.
	 The technique that we studied is used in passive or active detection sensor systems, 
specifically the advanced technique of array signal processing using antenna arrays. There is no 
doubt that the antenna array and receiver are important in the field of sensor technology. The 
remainder of this paper is organized as follows. In Sect. 2, we present the model of estimating 
the number of sources problem. In Sect. 3, we discuss the main basis of the proposed method. In 
Sect. 4, we give the proposed estimation method of the number of sources. In Sect. 5, we 
describe the experimental results that illustrate the effectiveness of the proposed method. 
Finally, the conclusions are given in Sect. 6.

2.	 Mathematical Model of Estimating the Number of Sources

	 Suppose there are far-field signals whose number is K incidenting from the directions 
1 2, , , Kθ θ θ�  onto an array antenna, and the number of elements is M. At the sampling time t, the 

expression of the observed signals of the antenna is shown in Eq. (1),
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Mt X t X t X t = … X  (the superscript T represents transpose) is the observed 
signal vector, ( )ka θ  is the array direction vector, ( ) ( ) ( ) ( )1 2, , , Ka a aθ  =  A θ θ θ�  is the matrix 
composed of direction vectors, [ ]1 2, , , T
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T
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T

Mt w t w t w t =  �w  is the additive noise vector, 1, 2, ,t N= �  is the sampling time, 
and N is the number of snapshots. The basic assumptions of the array observed signal model 
shown in Eq. (1) are as follows:(23)

(1)	The incident signals are narrowband stationary signals independent of each other, which 
s a t i s f y  t h e  m e a n  E { s ( t ) }  =  0  a n d  c o v a r i a n c e  m a t r i x 

( ) ( ){ } { }1 2
, , ,

K

H K K
s s s sE t t diag p p p P ×= ∈� � �s s , where 

Ksp  is the power of the k-th source 
signal.

(2)	The superimposed noise in the observed signal vector is additive noise (white Gaussian or 
colored noise), which is independent of the incident signals. 

(3)	The number of incident signals is less than those of antenna elements and snapshots at the 
same time, that is, ( )min ,K M N< .

(4)	The incident signals propagate in ideal space, and the antenna elements have omnidirectional 
consistency.

3.	 Main Basis of Proposed Method

	 The method proposed in this paper is mainly based on the following propositions:
Proposition 1: According to the estimation methods of the number of sources based on ITC, 
when the ratio of the maximum to minimum noise eigenvalues in the observed signals of the 
array antenna is less than 2, the ITC methods can correctly estimate the number of sources,(24) 
that is,

	 1 2K

M

+ <
λ
λ

,	 (2)

where M and K are the number of antenna elements and that of signals, and λK + 1 and λM are the 
maximum and minimum noise eigenvalues, respectively.
Proposition 2: For the eigenvalues of the covariance matrix of the observed signals of the array 
antenna, it is found that the noise eigenvalues are very divergent in the colored noise 
environment, and diagonal loading can reduce the divergence of the noise eigenvalues and make 
them close to equality, and it does not have a significant effect on some of the eigenvalues of the 
signals.(25–28)

	 The eigenvalues of the covariance matrix are calculated as R(t) = X(t) ∙ XH(t)/N, as do the 
eigen-decomposition to the covariance matrix R(t), and we can obtain the eigenvalues { } 1

M
k k=λ , 
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which are numerical sequences arranged in descending order. By diagonal loading, the 
eigenvalues { } 1

M
k k=λ  are changed as

	 ' ,k k DL= +λ λ λ 	 (3)

where λDL is the diagonal loading. 
	 However, the difficulty of the eigenvalue diagonal loading is that there is no theoretical 
formula for calculating it, and only some empirical formulas are available. If the eigenvalue 
diagonal loading is very small, it is impossible to overcome the effect of nonuniform noise on the 
eigenvalues. On the contrary, overloading occurs, which results in the under estimation of the 
number of sources.(25–28)

Proposition 3: When the number of snapshots is not very large compared with that of antenna 
elements, both the eigenvalues of signals and sample noise are biased estimates of real values, 
and the fusion of the two types of eigenvalue cannot be separated, which leads to errors in the  
estimation of the number of sources by ITC methods.(23)

	 The effects of the change in the proportional relationship between the number of antenna 
elements and that of snapshots on the signal and noise eigenvalues are analyzed as follows.
	 The expressions of estimation of the number of sources by ITC methods are functions of 
sample eigenvalues. The statistical distribution of signal eigenvalues is studied through 
simulation experiments, assuming that the total covariance matrix is { }13,8,6,1,1,1,1,1diag=Σ , 
and the observation sample matrix is set as N N=Z XΣ , where NX  is an M × N dimensional 
Gaussian random matrix (here, M = 8), and the probability distribution of its elements xi, j obeys 
( )0,1N , here 1, 2, ,  ,   and 1, 2, ,  i M j N= =� � . Five hundred independent repeated experiments 

were carried out, the distribution of eigenvalues of sample covariance matrix ˆ /H
N N N= Z ZΣ  

was determined, and the sample mean values of eigenvalues γ1 = 13, γ2 = 8, γ3 = 6, and γ4 = 1 
were calculated. The statistical distribution of sample eigenvalues with different sample numbers 
is shown in Fig. 1. In Fig. 1(a), M/N = 0.01 satisfies N M� , the estimates of γ1, γ2, γ3, and γ4 can 

(a) (b)

Fig. 1.	 (Color online) Distribution of sample eigenvalues of covariance matrix with different sample numbers.



2376	 Sensors and Materials, Vol. 34, No. 6 (2022)

(c) (d)

Fig. 1.	 (Color online) (Continued) Distribution of sample eigenvalues of covariance matrix with different sample 
numbers.

be clearly distinguished, and the mean values of estimates of γ1, γ2, γ3, and γ4 obtained from 500 
simulation experiments are very close to the real eigenvalues, which are γ1, γ2, γ3, and γ4. In 
Fig. 1(b), M/N = 0.1, which means that M and N are of the same order of magnitude. The 
estimates of γ1, γ2, γ3, and γ4 are fused together, and the mean values of estimates of γ1, γ2, γ3, and 
γ4 obtained from 500 simulation experiments also deviate from the real eigenvalues. In Fig. 1(c), 
M/N = 0.2, and in Fig. 1(d), M/N = 0.4, M and N are of the same order of magnitude in the two 
cases, which also reflects that the estimates of γ1, γ2, γ3, and γ4 are fused together, and the mean 
values of estimates of γ1, γ2, γ3, and γ4 also deviate from the real eigenvalues.
	 To further reflect the above laws, seven estimation methods of the number of sources are 
used to carry out simulation experiments under different snapshots, which are AIC,(12) MDL,(14) 
AIC combined with eigenvalue diagonal loading (IAIC),(7) MDL combined with eigenvalue 
diagonal loading (IMDL),(29) nonuniform MDL (NUMDL),(30) ratio of singular value 
decomposition (RSVD),(25) and the method of improved  BIC (MIBIC).(7) The signal-to-noise 
ratio (SNR) of observed signals varies from –10 to 30 dB, the step size is 5 dB, and 500 Monte 
Carlo simulations are carried out at each SNR. The experimental results are shown in Figs. 
2(a)–2(d). As can be seen from Fig. 2(a), when M/N = 0.01 satisfies  N M� , ideal estimation 
results of the number of sources can be obtained by a variety of algorithms at lower SNRs. From 
Figs. 2(b) and 2(c), we can see that when M/N = 0.1 or M/N = 0.2, a small number of algorithms 
can obtain ideal estimation results at high SNRs. In Fig. 2(d), it is difficult for all algorithms to 
obtain the correct estimation results.
	 From the AIC criterion expression, it can be seen that the estimation performance of the 
number of sources depends on the accuracy of sample eigenvalues. The ITC methods can 
accurately estimate the number of sources only when the eigenvalues of the sample signal 

1̂̂, , Kλ λ�  and the eigenvalues of the sample noise 1,ˆ̂ ,K Mλ λ+ �  can be well separated. The 
likelihood logarithm term in the AIC criterion expression is the ratio of the arithmetic mean 
value to the geometric mean value of the sample noise eigenvalues. The more concentrated the 
sample noise eigenvalues are and the farther they are from the sample signal eigenvalues, the 
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more accurate is the estimation of the number of sources. The distribution of sample eigenvalues 
is affected by the ratio of dimension to sample number, which is cN = M/N, and the SNR. When 
N M� , the sample noise eigenvalues 1,ˆ̂ ,K Mλ λ+ �  are concentrated on 2σ , which is the power 
of noise, and are far away from the sample signal eigenvalues 1̂̂, , Kλ λ� . When N compared with 
M is not very large, but at the same order of magnitude, the sample noise eigenvalues 1  ˆ , ˆ,K Mλ λ+ �  
are dispersed and fused with the signal eigevalues 1̂̂, , Kλ λ� , resulting in the incorrect estimation 
of the number of sources. When N < M, the geometric mean value of the sample signal 
eigenvalues is equal to zero, which leads to the likelihood logarithm term in the AIC criterion 
becoming meaningless. Even if the M – N zero sample eigenvalues are removed, the fusion of 
sample noise and signal eigenvalues also leads to a serious decline in the performance of the ITC 
methods.

4.	 Proposed Eigenvalue Diagonal Loading Method

	 Through our experiments, it is found that for the problem of estimation of the number of 
sources in the general asymptotic regime and colored noise environment, by controlling the 
divergence of noise eigenvalues to satisfy Proposition 1, the applicable domain of the existing 
estimation methods can be greatly expanded, including some ITC and RMT methods.

Fig. 2.	 (Color online) Estimation results of the number of sources with different sample numbers.

(a) (b)

(c) (d)
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	 Inspired by Proposition 1–Proposition 3, aiming at the problem of estimation of the number 
of sources under the condition of observed signals mixed with colored noise in the general 
asymptotic regime, a quadratic diagonal loading method for eigenvalues is proposed. The idea is 
to perform the eigen-decomposition of the covariance matrix of observed signals, and then the 
eigenvalues are firstly loaded diagonally, and the first diagonal loading is taken as the arithmetic 
mean value of all eigenvalues. The original eigenvalues and the diagonal loading value are added 
to replace the original eigenvalues. For eigenvalues after the first diagonal loading, the new 
diagonal loading of the eigenvalue is recalculated, and the second diagonal loading is carried out 
for the eigenvalues after the first diagonal loading, in order to satisfy the condition that the ratio 
of the maximum to minimum values of the noise eigenvalues does not exceed 2. After these 
steps, the ITC and RMT methods can be employed to estimate the number of sources. The role 
of diagonal loading is as follows: when the noise eigenvalue is very divergent, the loading 
quantity controls its divergence, which is equivalent to “whitening” colored noise, and when the 
number of samples is not very large compared with that of antenna elements, it can also reduce 
the fusion degree of signal and noise eigenvalues, such that they are separated more clearly to 
facilitate the estimation of the number of sources.
	 The following are the specific steps of the proposed method:
Step 1: assume that the number of antenna elements is M and the observed signals can be 
expressed as ( ) ( ) ( ) ( )1 2, , ,

T
Mt X t X t X t = … X  (the superscript T represents transpose). The 

sampling time is 1,2, ,t N= � , N is the number of snapshots, and the covariance matrix of the 
observed signals is calculated as R(t) = X(t)∙XH(t) / N.

Step 2: perform eigen-decomposition to the covariance matrix R(t), ( ) 1
M H

i i ii
t u u

=
=ΣR λ , where 

the eigenvalues λi and the eigenvectors ui are also respectively called sample eigenvalues and 
eigenvectors. The eigenvalue sequence is expressed as { } 1

M
k k=λ , which is a numerical sequence 

arranged in descending order.
Step 3: carry out the first diagonal loading for the eigenvalue sequence { } 1

M
k k=λ , and the formula 

for calculating the first diagonal loading is expressed as

	
1

11 .
M

k
k

jz
M =

= ∑λ 	 (4)

Step 4: according to the sample covariance matrix R(t) and the eigenvalue first diagonal loading 
Eq. (4), the new sample covariance matrix after diagonal loading is calculated, which is 
expressed as

	 ( ) ( )1 1· ,Mt t jz= +R R I� 	 (5)

where IM is an M-dimensional unit matrix.
Step 5: perform eigen-decomposition to the covariance matrix ( )1 tR� , then a new eigenvalue 
sequence 1{ }M

k k=λ�  is obtained.
Step 6: carry out the second diagonal loading for the eigenvalue sequence 1{ }M

k k=λ� . The 
determination of the second diagonal loading is as follows:
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(1) Obtain the sequence number of the eigenvalue with the highest ratio of two consecutive 
eigenvalues:

For the sequence of eigenvalues 1{ }M
k k=λ�  in descending order, select 1max ,  1, 2, , 1k

k k
k k Mλ

λ
+= = −�� .

(2) Calculate the smallest integer k̂  such that 1 0.1
2

.1

ˆ

ˆ0
k

M

k

k
+ + ×

<
+ ×

λ

λ
�  holds:

	

1

1

2
rounding up  ,                     0.6,

0.1
  

2
rounding  

ˆ

 up absolute value of ,   0.6.
0.1

Mk

Mk

M
N

k
M
N

λ λ

λ λ

+

+

 − 
<  

 = 
 −  ≥      

�

�

	 (6)

(3) Set the second diagonal loading quantity . ˆ2 0 1jz k= × , carry out the second diagonal loading 
for the eigenvalue sequence { }

1

M
k k=
λ� , and obtain a new eigenvalue sequence { }

1
ˆ M

k k
λ

=
:

	 ,ˆ 2   1, 2, ,k k jz k Mλ λ= + =� � .	 (7)

Step 7: employ the ITC and RMT methods to estimate the number of sources based on the new 
eigenvalue sequence { }

1
ˆ M

k k
λ

=
.

5.	 Simulation Experiment and Analysis

	 The proposed algorithm is applied to a uniform linear array (ULA), the array element interval 
is half-wavelength, and the DOAs are one dimension.
	 The validation of the proposed method is carried out on a DELL 9020MT personal computer 
with Intel (R) Core (TM) i7mur4770 CPU @ 3.40 GHz and Windows 64-bit operating system, 
and the simulation software is MATLAB R2010a. To fully verify the proposed method, the 
calculation results of the proposed method and the reference methods are compared, and four 
groups of tests, which represent all of the cases in the classical and general asymptotic regimes, 
are carried out. 
Experiment 1: the estimation results of the number of sources are compared in white Gaussian 
noise by two types of method; the first is the proposed method combined with the ITC methods 
[BIC, AIC, MDL, and Kullback information criterion (KIC)](25) and the second is directly using 
the ITC methods (BIC, AIC, MDL, and KIC). The experimental conditions are set as follows:
(1)	s1 is a binary phase shift keying (BPSK) signal with a symbol width of 10 / 31 μs and a carrier 

frequency of 10 MHz.
(2)	s2 is a continuous wave (CW) signal with a pulse width of 15 μs and a carrier frequency of 10 

MHz.
(3)	s3 is a linear frequency modulated (LFM) signal with a pulse width of 10 + 10 ∙ rand(1) μs, an 

initial frequency of 10 MHz, and a frequency modulation bandwidth of 10 / (1 + rand(1)) 
MHz.
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(c) (d)

(a) (b)

(4)	s4 is a multiple phase shift keying (MPSK) signal with the Frank coding mode, the symbol 
width is 0.4 μs, and the carrier frequency is 50 MHz.

	 The number of sources is K = 4 and the number of antenna elements is M = 10, 100, 300, and 
350. The mixing matrix A is generated by the random function randn. The sampling frequency is 
120 MHz and the number of snapshots is N = 300. The observed signals are overlapped with 
white Gaussian noise, the SNR ranges from −10 to 30 dB, and the step size is 2 dB. Five hundred 
Monte Carlo simulations are carried out at each SNR and the experimental results are shown in 
Figs. 3(a)–3(h). 
	 As can be seen from Figs. 3(a) and 3(b), at this time, / 1M N � , the relationship between the 
number of antenna elements and that of snapshots meets the requirements of the classical 
asymptotic system. In white Gaussian noise, on the basis of the proposed method combined with 
the ITC methods and the direct application of the ITC methods, the estimation of the number of 
sources can be realized accurately at a certain SNR. The required SNR is slightly higher for the 
proposed method combined with the ITC methods than for other methods. In Figs. 3(c) and 3(d), 
M/N = 1/3, the relationship between the number of antenna elements and that of snapshots 

Fig. 3.	 (Color online) Comparison of estimation results of the number of sources between two types of method in 
white Gaussian noise.
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approximately meets the requirements of the classical asymptotic system. Good results can be 
obtained by directly using the ITC methods, and the SNRs have no clear difference. In 
Figs. 3(e)–3(h), / 1M N ≥ , the relationship between the number of antenna elements and that of 
snapshots meets the requirements of the general asymptotic regime. By the proposed method 
combined with the ITC methods, the accurate estimation of the number of sources can be 
robustly realized at a lower SNR, but the estimation fails only when using the ITC methods.
Experiment 2: the estimation results are compared in colored noise by two types of method; the 
first is the proposed method combined with the ITC methods (BIC, AIC, MDL, and KIC) and 
the second is directly using the ITC methods (BIC, AIC, MDL, and KIC). The source signals are 
the same as those in Experiment 1. The number of sources is K = 4, and the number of antenna 
elements is M = 10, 100, 300, and 350. The mixing matrix A is generated by the random function 
randn. The sampling frequency is 120 MHz and the number of snapshots is N = 300. The 
observed signals are overlapped with colored noise and the elements of its covariance matrix are 
expressed as ( )2 0.9 exp[( / 2)]i k

ik nn j i k−= −σ π , , 1, 2, ,i k M= � , 1j = − . σn is an adjustable 
parameter, which is used to set the SNRs of observed signals, the variation range of SNR is 

(e)

(h)(g)

(f)

Fig. 3.	 (Color online) (Continued) Comparison of estimation results of the number of sources between two types 
of method in white Gaussian noise.
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Fig. 4.	 (Color online) Comparison of estimation results of number of sources between the two types of method in 
colored noise.

(e) (f)

−10–40 dB, the step size is 4 dB, and 500 Monte Carlo simulations are carried out at each SNR. 
The experimental results are shown in Figs. 4(a)–4(g).
	 As can be seen from Figs. 4(a) and 4(b), / 1,M N � , the relationship between the number of 
antenna elements and that of snapshots meets the requirements of the classical asymptotic 

(a) (b)

(c) (d)
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system. In colored noise, the number of sources can be estimated accurately on the basis of the 
proposed method combined with the ITC methods at a certain SNR, but the number of sources 
cannot be accurately estimated without employing the proposed method. In Figs. 4(c) and 4(d), 
M/N = 1/3, the relationship between the number of antenna elements and that of snapshots 
approximately meets the requirements of the classical asymptotic system. By combining the 
proposed method with the ITC methods, a good effect of estimation can be achieved; otherwise, 
the estimation will fail. In Figs. 4(e)–4(g), / 1M N ≥ , the relationship between the number of 
antenna elements and that of snapshots meets the requirements of the general asymptotic regime. 
By the proposed method combined with the ITC methods, the accurate estimation of the number 
of sources can be realized at a lower SNR. However, the estimation of the number of sources will 
be incorrect if the proposed method is not applied.
Experiment 3: the estimation results are compared in a white Gaussian noise environment by 
two types of method. The first is the proposed method combined with the RMT methods 
[BN-AIC and Kritchman and Nadler (KN)](31) and the second is directly using the BN-AIC, KN, 
and the Gerschgorin circle–corrected Rao’s score test–generalized Bayesian information 
criterion (GDE-CRSTGBIC) method.(23) The experimental conditions are set as follows:
(1)	s1 is a BPSK signal with a symbol width of 10/31 μs and a carrier frequency of 10MHz.
(2)	s2 is a CW signal with a pulse width of 15 μs and a carrier frequency of 10 MHz.
(3)	s3 is an LFM signal with a pulse width of 10 + 10 ∙ rand(1) μs, an initial frequency of 10 MHz, 

and a frequency modulation bandwidth of 10/(1 + rand (1)) MHz.
(4)	s4 is a frequency shift keying (FSK) signal with a 13-bit Barker code, the symbol width is 

10/13 μs, and the frequencies at the two symbols are 25 and 50 MHz.
(5)	s5 is a MPSK signal with the Frank coding mode, the symbol width is 0.4 μs, and the carrier 

frequency is 50 MHz.
The number of sources is K = 5 and the number of antenna elements is M = 10, 100, 300, and 
350. The mixing matrix A is generated by the random function randn. The sampling frequency is 
120 MHz and the number of snapshots is N = 300. The observed signals are overlapped with 

(g)

Fig. 4.	 (Color online) (Continued) Comparison of estimation results of number of sources between the two types 
of method in colored noise.
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white Gaussian noise, the variation range of SNR is −10–30 dB, the step size is 4 dB, and 200 
Monte Carlo simulations are carried out at each SNR. The experimental results are shown in 
Fig. 5(a)–5(f).
	 As can be seen from Figs. 5(a), at this time, / 1M N � , the relationship between the number of 
antenna elements and that of snapshots meets the requirements of the classical asymptotic 

Fig. 5.	 (Color online) Comparison of estimation results between two types of method in white Gaussian noise.

(a) (b)

(c) (d)

(e) (f)
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system. In white Gaussian noise, on the basis of the proposed method combined with RMT 
methods, the estimation accuracy increases with SNR. When the SNR reaches 16 dB, the 
estimation of the number of sources can be realized with probability 1. When the SNR reaches 
10 dB, the GDE-CRSTGBIC method can be used to estimate the number of sources with 
probability 1. Figure 5(b) shows that when the SNR reaches 6 dB, BN-AIC and KN can be used 
to estimate the number of sources with probability 1. In Figs. 5(c) and 5(d), M/N = 1/3, the 
relationship between the number of antenna elements and that of snapshots approximately meets 
the requirements of the classical asymptotic system. When the proposed method is combined 
with the BN-AIC and KN methods, their estimation accuracy increases with SNR. When the 
SNR increases to a certain value, the estimation accuracy can accurately estimate the number of  
sources with probability 1, and the requirement for the SNR of the GDE-CRSTGBIC method is 
lower than those of other methods. If the RMT methods are directly used, the estimation 
accuracies of the BN-AIC and KN methods can reach probability 1 when the SNR reaches a 
certain value. In Figs. 5(e) and 5(f), / 1M N ≥ , the relationship between the number of antenna 
elements and that of snapshots meets the requirements of the general asymptotic regime. By 
combining the proposed method with the BN-AIC and KN methods, they can accurately 
estimate the number of sources with probability 1 when the SNR reaches a certain value. By 
only using the BN-AIC and KN methods, the KN method can be used to accurately estimate the 
number of sources with probability 1 when the SNR reaches a certain value, but the BN-AIC 
method failed when the number of antenna elements is more than that of snapshots.
Experiment 4: the estimation results are compared in a colored noise environment by two types 
of method; the first is the proposed method combined with the RMT methods (BN-AIC and KN) 
and the second is directly using the RMT methods (BN-AIC and KN) and the GDE-CRSTGBIC 
method. The source signals are the same as those in Experiment 3.
	 The number of sources is K = 5 and the number of antenna elements is M = 10, 100, 300, and 
350. The mixing matrix A is generated by the random function randn. The sampling frequency is 
120 MHz and the number of snapshots is N = 300. The observed signals are overlapped with 
colored noise, and the elements of its covar iance mat r ix are expressed as 

( )2 0.9 exp[( / 2)]i k
ik nn j i k−= −σ π , , 1, 2, ,i k M= � . σn is an adjustable parameter, which is used 

to set the SNRs of observed signals, the variation range of SNR is −10–30 dB , the step size is 
4 dB, and 200 Monte Carlo simulations are carried out at each SNR. The experimental results 
are shown in Figs. 6(a)–6(f).
	 As can be seen from Figs. 6(a) and 6(b), at this time, / 1M N � , the relationship between the 
number of antenna elements and that of snapshots meets the requirements of the classical 
asymptotic system. In colored noise, on the basis of the proposed method combined with RMT 
methods, the number of sources can be estimated accurately at a certain SNR. If the proposed 
method is not applied, only the GDE-CRSTGBIC method can be used to correctly estimate the  
number of sources, and the SNR required by this method to achieve the accuracy of probability 
1 is slightly lower than those of the BN-AIC and KN methods based on the proposed method. In 
Figs. 6(c) and 6(d), M/N = 1/3, the relationship between the number of antenna elements and that 
of snapshots approximately meets the requirements of the classical asymptotic system. By 
combining the proposed method with RMT methods, the estimation accuracy of the BN-AIC 
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(c) (d)

(e) (f)

(a) (b)

Fig. 6.	 (Color online) Comparison of estimation results between the two types of method in colored noise.

and KN methods is improved with increasing SNR. When the SNR reaches a certain value, the 
number of sources can be estimated accurately with probability 1. The number of sources cannot 
be estimated accurately using only the BN-AIC and KN methods. In Figs. 6(e) and (f), / 1M N ≥ , 
the relationship between the number of antenna elements and that of snapshots meets the 
requirements of the general asymptotic regime. By combining our proposed method and RMT 
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methods, the estimation accuracy of the BN-AIC and KN methods is improved with increasing 
SNR. When the SNR reaches a certain value, the number of sources can be estimated accurately 
with probability 1 and with a smaller SNR than GDE-CRSTGBIC. Without the proposed 
method, but only using the BN-AIC and KN methods, the estimation failed.
	 From the previous experiments, the advantages and disadvantages of combining of our 
proposed method with various existing methods are shown in Table 1.

6.	 Conclusions

	 The estimation method of the number of sources proposed in this paper belongs to an 
important area of antenna array signal processing in the field of sensor technology. In an actual 
environment, when an antenna array is used for signal reception, the proportional relationship 
between the number of antenna elements and that of signal snapshots and whether the noise of 
observed signals is mixed with white Gaussian or colored noise is unknown. In this study, an 
eigenvalue quadratic diagonal loading method for estimating the number of sources is designed. 
By combining the proposed method with the existing ITC methods, the ITC methods are 
extended to general asymptotic regimes, and the noise environment can be white Gaussian or 
colored noise. At the same time, this method extends the applicable scope of the RMT methods, 
which can be applied to the environment of colored noise. Compared with the existing eigenvalue 
diagonal loading methods, the proposed method adopts the eigenvalue secondary diagonal 

Table 1
Advantages and disadvantages of our proposed method with various existing methods.
Methods Advantages Disadvantages

ITC methods (BIC, AIC, MDL, KIC)

Applicable to:
• Classical asymptotic regime 
• White Gaussian noise
• Can get good results at lower SNR 

Not applicable to:
• General asymptotic regime 
• Colored noise

Eigenvalue quadratic diagonal 
loading combined with ITC methods 
(BIC, AIC, MDL, KIC)

Applicable to:
• Classical asymptotic regime
• General asymptotic regime
• White Gaussian noise
•  Colored noise

RMT methods (BN-AIC, KN)

Applicable to:
• Classical asymptotic regime
• General asymptotic regime
• White Gaussian noise

Not applicable to:
• Colored noise

GDE-CRSTGBIC method 

Applicable to:
• Classical asymptotic regime
• General asymptotic regime
• White Gaussian noise
• Colored noise

•Need higher SNR

Eigenvalue quadratic diagonal 
loading combined with BN-AIC or 
KN

Applicable to:
• Classical asymptotic regime
• General asymptotic regime
• White Gaussian noise
• Colored noise
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loading, which is equivalent to the second correction of the eigenvalue distribution, and makes 
the estimation more robust. At the same time, the quadratic diagonal loading of the eigenvalues 
of the covariance matrix, combined with the ITC or RMT methods, does not affect the function 
for estimating the number of sources in a white Gaussian noise environment. 
	 In the follow-up research on the problem of estimating the number of sources, we will 
continue to conduct in-depth research on other practical problems, mainly including (1) the 
estimation of the number of sources and DOA in the case of non-Gaussian distribution observed 
data and (2) the estimation of the number of sources and DOA when the received signals of each 
antenna element do not meet independent conditions.
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