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 We derived an overall piezoresistance tensor for polycrystalline aggregates having an 
orthotropic texture using the crystallite orientation distribution function (CODF) and the 
cubic single-crystal piezoresistance tensor.  We found that the deviatoric part of the overall 
piezoresistance tensor has a functional dependence on the preferential crystallographic 
orientation of cubic single crystals and that the tensor has three independent components.  The 
physical properties of the tensor are invariant under the choice of the CODF.  We applied the 
CODF defined by Roe to calculate the tensor for a fiber texture.  Furthermore, we compared the 
experimental results for the piezoresistance of polysilicon with our theoretical analysis results.  
The experimental results indicate that the variation in texture strength plays a major role in 
representing the piezoresistance anisotropy of polycrystalline aggregates.

1. Introduction

 Polycrystalline semiconductor materials are widely used as a force-sensing element of 
micro-electromechanical systems (MEMS).(1–5)  In the mid-1980s, French and Evans proposed 
a physical interpretation of the polycrystalline silicon (poly-Si) piezoresistance taking into 
account the ideal fiber texture.(6–8)  Since then, the number of published papers concerning 
piezoresistance in polycrystalline semiconductor materials has increased yearly.(1–15)  The huge 
amount of accumulated experimental data suggests that the piezoresistance in polycrystalline 
semiconductor materials strongly depends on the crystallite orientation distribution, i.e., the 
texture.(8)  However, the physical role of the preferential crystallographic orientation in the 
overall piezoresistance anisotropy, i.e., the texture-induced piezoresistance anisotropy for 
polycrystalline aggregates, has not yet been established.  Therefore, in this study, we derived 
an overall piezoresistance tensor for polycrystalline aggregates having an orthotropic texture 
in terms of the crystallite orientation distribution function (CODF) and the cubic single-
crystal piezoresistance tensor.  Furthermore, as long as we define the texture distribution 
using appropriate spherical harmonics, the derived overall orthotropic piezoresistance tensor 
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is invariant for any choice of the functional form of the CODF.  Thus, the obtained result is 
expected to be very useful for practical piezoresistance analysis for polycrystalline aggregates 
having cubic single crystals based on texture measurements using X-ray diffraction techniques.(16)

 The organization of our paper is as follows.  In the first part of the paper, we present 
the derivation of the overall piezoresistance tensor for polycrystalline aggregates having 
an orthotropic texture in terms of the CODF and the cubic single-crystal piezoresistance 
tensor.  In the second part of the paper, we verify the consistency between the derived overall 
piezoresistance tensor and experimental results by the microfabrication and texture and 
piezoresistance measurements of a poly-Si piezoresistor.  

2. Derivation of Overall Piezoresistance Tensor for Polycrystalline Aggregates 

2.1 Description of texture-induced piezoresistance anisotropy by means of CODF(17)

 The CODF defined by the three Euler angles (ψ,θ,ϕ) shown in Fig. 1 can be used for 
a quantitative description of crystal texture.  We assume that V0 is the total volume of a 
polycrystalline aggregate occupied by all single crystal grains, and ∆V(ψ,θ,ϕ) is the partial 
volume occupied by single crystal grains contained within the element of orientation between 
(ψ,θ,ϕ) and (ψ+Δψ,θ+Δθ,ϕ+Δϕ) with respect to the material reference frame O-x1x2x3.  We can 
define the CODF as W(ψ,θ,ϕ),(18)

 � �����
����� � � � �

V
V W d d d( ) = ( )
0

sin . (1)

If we perform an integration of the CODF with respect to the total volume of the polycrystalline 
aggregate, it is plausible from Eq. (1) that,
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Fig. 1. Definition of Euler angle.
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where ξ ≡ cosθ.  

 Then, the crystallographic orientation average of an arbitrary fourth-rank tensor Tijkl(ξ,ψ,ϕ) 
can be calculated from Eqs. (1) and (2),

 ( ) ( )
2 2 1

0 0 1
ijkl ijklT W  T d d d

−

= ∫∫∫
π π

ξ,ψ,φ ξ,ψ,φ ξ ψ φ . (3)

 We assume that a polycrystalline aggregate is composed of a huge number of cubic single 
crystals, which can be estimated as physical points, and that the stress applied to each crystal 
is the same as that applied to the polycrystalline aggregate or that the material is subjected to 
a remote average uniform stress.  This averaging method is similar to the Reuss model for the 
elastic compliance tensor.(19)  We define two Cartesian coordinate systems corresponding to the 
material reference frame O-x1x2x3 and the principal cubic single-crystal crystallographic frame 
O-X1X2X3, as shown in Fig. 1.  The orthogonal orientations of the two Cartesian coordinate 
systems can be related by three Euler angles (ψ,θ,ϕ).  If an index occurs twice in any term of 
the Cartesian tensor components, summation is taken from 1 to 3.  However, the capital letters 

(e.g., L) and Greek indices (e.g., α, β, γ) contained in the summation symbols 
3

1
( e.g., , )

L

α

γ α= =−
∑ ∑  

obey the ordinary summation rule and the tensor summation convention does not apply to them.  
According to a previous work,(20,21) a piezoresistance tensor having cubic anisotropy with 
respect to the crystallographic principal frame O-x1x2x3 can be written as

 
3

1 2 3
1

2ijkl ij kl ijkl iL jL kL lL
L

IΠ π δ δ π π δ δ δ δ
=

= + + ∑ , (4)

where δij is the Kronecker delta, ( )1
2ijkl ik jl il jkI = +δ δ δ δ , π1 = Π1122  = Π2211 = Π2233 = Π3322 = 

Π3311 = Π1133, π2 = Π2323 = Π3131 = Π1212 (Π2323 = Π2332 = Π3223 = Π3232, and similarly for other 
components), and π1 + 2π2 + π3 = Π1111 = Π2222 = Π3333.
 The law of fourth-rank tensor transformation leads to the following piezoresistance tensor 
with respect to the material frame O-x1x2x3:

 p q sr
ijkl pqrs

i j k l

X X XX
x x x xΠ
∂ ∂ ∂∂= ∂ ∂ ∂ ∂π , (5)

where p

i

X
x
∂
∂  is the direction cosine between reference frames O-X1X2X3 and O-x1x2x3, and it can 
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be expressed by a standard method using the three Euler angles (ψ,θ,ϕ) shown in Table 1.(22)

 Then, the crystallographic orientation average of ijklπ  can be written by using Eqs. (3) and (5) 
as

 ( )
2 2 1

0 0 1

p q sr
ijkl pqrs

i j k l

X X XXW d d dx x x xΠ
−

∂ ∂ ∂∂= ∂ ∂ ∂ ∂∫ ∫ ∫
π π

π ξ,ψ,φ ξ ψ φ , (6)

where ξ ≡ cosθ and W(ξ,ψ,ϕ)is the CODF described by the spherical harmonics.(23,24)

 The substitution of Eqs. (4) and (5) into Eq. (6) leads to

 1 2 32ijkl ij kl ijkl ijklI M= + +π π δ δ π π , (7)
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where
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3
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L L L L
ijkl
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X X X XA x x x xξ,ψ,φ
=

∂ ∂ ∂ ∂≡ ∂ ∂ ∂ ∂∑ . (9)

 It is plausible from Eq. (5) that the tensor Mijkl forms the deviatoric part of the piezoresistance 
tensor under a coordinate transformation and has the following basic properties (see Appendix A):

1122 1212M M= , 2233 2323M M= , 3311 3131M M= ,

1111 1133 1122 2211 2222 2233 3311 3322 3333 1M M M M M M M M M+ + = + + = + + = , (10)

3kkll klklM M= = .

Table 1
Transformation matrix for Euler angles.

x1 x2 x3

X1
cosϕcosθcosψ
 − sinϕsinψ

cosϕcosθsinψ
 + sinϕcosψ −cosϕsinθ

X2
−sinϕcosθcosψ
 − sinϕsinψ

−sinϕcosθsinψ
 + cosϕcosψ sinϕsinθ

X3 sinθcosψ sinθsinψ cosθ

(8)
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 We can now decompose the overall piezoresistance tensor into isotropic and deviatoric parts 
as (see Appendix B)

 0
ijkl ijkl ijkl '= +π π π , (11)

where 0
ijklπ  and ijkl'π  are the isotropic and deviatoric tensor components, respectively.  

According to Appendix B, 0
kkll kkll=π π  and 0

klkl klkl=π π  are the scalar invariants of the fourth-

rank tensor.  Therefore, it can be immediately concluded that

 0 0kkll klkl' ,  '= =π π . (12)

 The following physically significant properties for the deviatoric part of the overall 
piezoresistance tensor are given in Appendix C,

2323 2233' '=π π , 1313 1133' '=π π , 1212 1122' '=π π ,

1111 1313 1212 0' ' '+ + =π π π , 3333 2323 1313 0' ' '+ + =π π π , (13)

2222 2323 1212 0' ' '+ + =π π π .

 It can be concluded from Eq. (12) that the nine components of the deviatoric part of the 
overall piezoresistance tensor ijkl'π  are necessary to describe the anisotropy induced by the 
orthotropic texture and that the number of independent components of ijkl'π  is only three.  
 The final form of the overall piezoresistance tensor equation is given in Appendix B,

 ( ) ( )0
1 3 2 3

1 125 5ijkl ij kl ijklI≡ + + +π π π δ δ π π , 

 ( )3
1 25

'
ijkl ijkl ij kl ijklM I = − +  

π π δ δ . 

The physical signif icance of Eq. (13) is that the hydrostatic stress component 0
ijklπ  

is invar iant for both polycrystalline aggregates and a cubic single crystal, i.e., 
0 0 0
1111 1122 1133 1111 11222+ + = +π π π Π Π .  Another finding of physical significance is that there are 

only three independent components of ijkl'π  for any choice of the CODF.  

2.2 Components of overall piezoresistance tensor

 The derived overall orthotropic piezoresistance tensor property is invariant for any choice 
of the functional form of the CODF.  Therefore, we apply the CODF to the orthotropic texture 

(14)
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defined by Roe in a sample calculation.(23)  As pointed out by Roe, the CODF can be expanded 
using the normalized generalized Legendre function Zαβγ(ξ) as

 ( ) ( ) ( ) ( )
0

exp expW w Z i i
α α

αβγ αβγ
α β αγ α

ξ,ψ,φ ξ βψ γφ
∞

= =− =−

= − −∑ ∑ ∑ . (15)

 The tensor component of Aijkl(ξ,ψ,ϕ)is expressed by three Euler angles.  Thus, Eq. (9) can be 
expanded using the normalized generalized Legendre function Zαβγ(ξ) as

 ( ) ( ) ( ) ( ) ( )
0

exp exp
' '

ijkl ' 'ijkl
' ' '

A a Z i i
α α

α βγ α βγ
α β α γ α

ξ,ψ,φ ξ βψ γφ
∞

= =− =−

≡ ∑ ∑ ∑ , (16)

where

 ( ) ( ) ( ) ( ) ( )
2 2 1

2
0 0 1

1 exp exp4' ijkl 'ijkl
a A Z i i d d d

−

= − −∫∫∫
π π

α βγ α βγξ,ψ,φ ξ βψ γφ ξ ψ φ
π . (17)

 The substitution of Eqs. (15) and (16) into Eq. (8) and the fundamental property for the 

integral of ( ) ( )
1

1
' 'Z Z  d

−

=∫ αβγ α βγ ααξ ξ ξ δ  lead to

 ( )2

0
4ijkl ijkl

M w a
α α

αβγ αβγ
α β αγ α

π
∞

= =− =−

= ∑ ∑ ∑ . (18)

 Equation (18) can be reduced by using the rule of cubic crystal symmetry for the expansion 
coefficients derived by Roe (see Appendix D),

 ( ) ( ) ( ) ( )2
000 000 400 400 420 420 440 440

4 7 12 24 247ijkl ijkl ijkl ijkl ijklM w a w a w a w a = + + +  
π , (19)

where 000 2
1

4 2
w =

π
 and ( )000

2
5ijkla = .

 The expressions for the expansion coefficients aαβγ and three independent components of the 
tensor Mijkl are summarized in Tables 2 and 3, respectively.  An example of calculation for aαβγ 
and Mijkl is given in Appendix E.
 The substitutions of aαβγ and Mijkl in Tables 2 and 3 into Eqs. (11) and (14) give the 
longitudinal component of the overall piezoresistance tensor,
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 ( ) ( )2
1111 1 2 3 400 420 440 3

32 12 2 16 5 8 55 35 w w w= + + + − +ππ π π π π . (20)

 The remaining eight components can be easily derived from Eqs. (11) and (14) if necessary.  
In the special case of polycrystalline aggregates having the <100> fiber texture, Eq. (20) can be 
reduced to (see Appendix E)

 ( )
2

400 100
1111 2222 1 2 3 3

12 232 5 35
w

= = + + +
π

π π π π π π . (21)

Thus, a single expansion coefficient w400 (reduced to the normalized Legendre function)(25)

plays an important role in describing the strength of the fiber texture.  In the case of isotropy, 
corresponding to a completely random distribution, 400 100 0w = .  On the other hand, in the 
case of an ideal fiber texture, in which all the crystal grain axes have the same specified fiber 

axis orientation, the expansion coefficient has a fixed value, i.e., 400 100 2
3 0 0537

4 2
w .= ≅

π
.  

3. Microfabrication and Experiment

 To verify the consistency between the proposed tensor equation and the experimental results, 
the microfabrication and texture and piezoresistance measurements of a poly-Si piezoresistor 
were carried out.  The starting substrate was n-type (100) single-crystal silicon with a thermal-
SiO2 isolation layer of 0.7 µm thickness.  p-type poly-Si of 0.5 µm thickness was deposited 
on the SiO2 isolation layer by low-pressure chemical vapor deposition (LPCVD).  The reactor 
temperature and silane partial pressure during the LPCVD process were 873 K and 1 Pa, 
respectively.  The dopant concentration of the p-type poly-Si was controlled by the implantation 
of boron ions.  The crystal grain configuration was controlled by annealing with temperature 
up to 1373 K after the implantation.  Samples with three different dopant concentrations were 
prepared: N = 1019 cm−3 (sheet resistance = 1480 Ω/□), N = 5 × 1019 cm−3 (sheet resistance = 
139.5 Ω/□), and N = 1020 cm−3 (sheet resistance = 75.1 Ω/□).  Average grain sizes with three 
different dopant concentrations were 0.13 (N = 1019 cm−3), 0.12 (N = 5 × 1019 cm−3), and 0.12 

Table 3
Examples of calculated Mijkl.

Mijkl

ijkl = 1122
2 2

400 440
4 2 81

5 35 35
  w w+ −π π

ijkl = 2233 22
400 420

16 516 21
5 35 35

  
w w− − ππ

ijkl = 3311 22
400 420

16 516 21
5 35 35

  
w w− + ππ

Table 2
Examples of calculated aαβγ.

ijkl = 1122 ijkl = 2233 ijkl = 3311

(a000)ijkl  2
5  2

5  2
5

(a400)ijkl  2
60  2

15−  2
15−

(a420)ijkl  0  5
30−  5

30

(a440)ijkl  35
60−  0  0
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µm (N = 1020 cm−3).  The average grain sizes obtained from the number average were in good 
agreement with the area average.  Thus, it was confirmed that the p-type poly-Si is composed of 
single crystal grains.  
 Inverse pole figures of the p-type poly-Si thin films were obtained by the standard electron 
backscatter diffraction method using a system combining a field-emission scanning electron 
microscope (FE-SEM, JOEL: JSM-6500F) and an electron backscatter diffraction detector (EBSD, 
National Instruments: DVC 1412M).  
 Figure 2(a) shows the variation in the texture of poly-Si as a function of the temperature and 
silane pressure during the LPCVD process reported in Ref. 26.  The poly-Si obtained in this 
work has a <100> fiber texture as indicated by the tip of the red triangle in Fig. 2(a).  Figure 2(b) 
shows typical inverse pole figures for the p-type poly-Si with the above dopant concentrations.  
The obtained inverse pole figures indicated that a strong <100> fiber texture is dominant as 
pointed out by Wenk and coworkers.(26,28)  The relative intensity of the <100> fiber texture 
was inversely proportional to the dopant concentration.  The <100> fiber texture approaches a 
random distribution for a relatively high dopant concentration.
 p-type poly-Si piezoresistors and aluminum interconnections were fabricated by ultraviolet 
photolithography and reactive ion etching.  Then, sintering was performed to form ohmic 
contacts between the p-type poly-Si piezoresistors and the aluminum interconnections.  A 
fabricated poly-Si piezoresistor is shown in Fig. 3(a).  The typical dimensions of the rectangular 
p-type poly-Si piezoresistor were a length of 80 µm and a width of 8 µm.  Finally, the n-type (100) 
single-crystal silicon substrate was cut into a rectangular microbeam and used to apply stress 
to the p-type poly-Si piezoresistors located on the substrate surface via a microbeam bending 
system, as described by Toriyama et al.(29)  The constitutive equation for the piezoresistance of 
polycrystalline aggregates in the material reference frame O-x1x2x3 can be written as

 
0

ij
ijkl kl

ρ
π σρ

∆
= , (22)

Fig. 2. (Color online) (a) Variation of the texture of poly-Si as a function of the temperature and silane pressure 
during the LPCVD process and (b–d) related pole figures.  (b) N = 1 × 1019 cm−3, (c) N = 5 × 1019 cm−3, and (d) N = 
1 × 1020 cm−3.

(a) (b) (c) (d)



Sensors and Materials, Vol. 30, No. 9 (2018) 2133

where Δρij/ρ0 and σkl are the components of the relative changes in the resistivity and stress 
tensor, respectively.  When the electrical field vector, current density vector, and in-plane (x1x2 
plane), uniaxial normal stress tensor are in the x1-direction, the longitudinal component of the 

piezoresistance tensor can be determined from Eq. (22) as ( )11 0 1111 11/ρ ρ π σ∆ = .  Note that the 

x3-direction of the fiber texture axis for the poly-Si piezoresistor coincides wth <100>, which 
is perpendicular to the n-type (100) single-crystal silicon substrate surface.  The longitudinal 
component of the piezoresistance tensor has a transversely isotropic property and the x1-
direction can be selected as an arbitrary orientation in-x1x2 plane (see Appendix E).  However, 
in the present work, we choose <110> of the n-type (100) single-crystal silicon substrate as 
the x1-direction of the poly-Si piezoresistor.  Figure 3(b) shows the relative change in the 
resistance of the p-type poly-Si piezoresistors as a function of applied stress.  The change in 
resistance linearly increases with increasing applied stress for all samples with different carrier 
concentrations.  It is clear that the variation in resistance with the applied stress increased as the 
carrier concentration decreased.

4. Discussion 

 On the basis of Eq. (21), the overall piezoresistance tensor component 1111π  is composed 
of π1 = Π1122, π2 = Π2323, and π1 + 2π1 + π3 = Π1111 related to the magnitude of piezoresistance 
components of the single-crystal silicon and the expansion coefficient w400 related to the CODF.  
Thus, applying Eq. (21) to determine the experimental change in the expansion coefficient w400 
with the variation in crystal texture, the values of Π1111, Π1122, and Π2323 for the p-type single-
crystal silicon must be specified.  The values were obtained from the equation derived by 
Richter et al.(30)

 ( ) ( )2323 2323,,,A A refN T C N TΠ Π= ,

 ( ) ( )1111 1111,, ,A A refN T C N TΠ Π= ,

Fig. 3. (Color online) (a) Photograph of piezoresistor and (b) experimental results.

(a) (b)



2134 Sensors and Materials, Vol. 30, No. 9 (2018)

 ( ) ( )1122 1122,, ,A A refN T C N TΠ Π= ,

 ( )
( ) ( )

( ) 0 92323,
0 43 1 60 1 3

19 20

, 300
1 300 3006 10 7 10

.ref
A . ..

A A

TC N T  
N NT T

Π −

− −
≡        + +      ×   ×   

, 

where NA (cm−3), T (K), and Πijkl,ref are the carrier concentration, temperature, and reference 
piezoresistance coefficient Πijkl at a very low carrier concentration (NA = 10 × 1014 cm−3) at 
room temperature (T = 300 K), respectively.  Figure 4 shows a comparison of the experimental 
values of the present work and those partly taken from Ref. 31 and the theoretical prediction 
based on Richter’s equation for Π2323, Π1111, and Π1122.  The validity of Richter’s equation for 
the piezoresistance components of p-type single-crystal silicon can be confirmed from Fig. 4.
 The preparation of π1, π2, and π3 used for Eq. (21) has been completed.  Then, the final task 
is to determine the experimental change in the expansion coefficient w400 with the variation in 
crystal texture.  The expansion coefficient w400 can be determined by fitting the experimental 

data for 1111π  to Eq. (21) after substituting the previously obtained values of π1, π2, and 

π3.  The obtained expansion coefficient w400 values were 0.036 for N = 1019 cm−3, 0.026 for 
N = 5 × 1019 cm−3, and 0.012 for N = 1020 cm−3.  Figure 5 shows the relationship between the 

overall piezoresistance tensor component 1111π  and the expansion coefficient w400 of the CODF 

obtained from Eq. (21).
 On the basis of Eq. (21), the magnitude of the overall piezoresistance tensor component 

1111π  may proportionally correlate with that of the expansion coefficient w400 at a constant 

dopant concentration, i.e., π1, π2, and π3 are constant.  The variation in the magnitude of  w400 
correlated with the growth of fiber texture and that of random distribution.  The <100> fiber 
texture tended to show a random distribution with increasing dopant concentration, as also 

Fig. 5. (Color on l i ne) Compa r i son be t ween 
analytical and experimental results for piezoresistance 
coefficient π1111.

Fig. 4. (Color online) Comparison of experimental 
values in Ref. 31 and the theoretical prediction based 
on Richter’s equation for Π2323.

(23)
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revealed by the results of pole figure measurement in Figs. 2(b) and 5.  The magnitude of 

the overall piezoresistance tensor component 1111π   also tended to decrease with increasing 

dopant concentration, as revealed by the results in Fig. 5.  Equation (21) shows the experimental 

evidence indicating that both magnitudes of the overall piezoresistance tensor component 1111π   

and expansion coefficient w400 increased with the growth of <100> fiber texture.  On the other 

hand, both of 1111π  and w400 decreased with the growth of random distribution.

 Therefore, we can conclude that the proposed overall piezoresistance tensor equation 
with a spherical harmonics expansion is expected to be useful for determining the role of the 
preferential crystallographic orientation in the piezoresistance anisotropy of polycrystalline 
aggregates.

5. Conclusions

 We have derived the overall piezoresistance tensor for polycrystalline aggregates having an 
orthotropic texture in terms of the CODF and the cubic single-crystal piezoresistance tensor.  
It was shown that the overall piezoresistance tensor for polycrystalline aggregates has nine 
components and can be decomposed into isotropic and deviatoric parts.  We found that the nine 
deviatoric tensor components are functions of the preferential crystallographic orientation of the 
cubic single crystals and that the number of independent components is greatly reduced to three.  
 To verify the consistency between the derived overall piezoresistance tensor and 
experimental results, the microfabrication and texture and piezoresistance measurements of 
a poly-Si piezoresistor were carried out.  It can be demonstrated that the proposed overall 
piezoresistance tensor equation with a spherical harmonics expansion is expected to be useful 
for determining the role of the preferential crystallographic orientation in the piezoresistance 
anisotropy of polycrystalline aggregates.
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Appendix

A. Derivation of basic properties of tensor Mijkl

 We can find a symmetrical property of Aijkl(ξ,ψ,ϕ) from Eq. (9) as

 ( ) ( )
3 3

1 1

L L L L L L L L

L L

X X X X X X X XA Ax x x x x x x xααββ αβαβ
α α β β α β α β

ξ,ψ,φ ξ,ψ,φ
= =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= = =∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑ . (A1)

 Then, a symmetrical property of Mijkl(ξ,ψ,ϕ) defined by Eq. (8) is

( ) ( ) ( ) ( )
2 2 1 2 2 1

0 0 1 0 0 1

M W A d d d W A d d d M
− −

= = =∫∫∫ ∫∫∫, , , , , , , ,
π π π π

ααββ ααββ αβαβ αβαβξ ψ φ ξ ψ φ ξ ψ φ ξ ψ φ ξ ψ φ ξ ψ φ, 

 ( ) ( ) ( ) ( )
2 2 1 2 2 1

0 0 1 0 0 1

M W A d d d W A d d d M
− −

= = =∫∫∫ ∫∫∫, , , , , , , ,
π π π π

ααββ ααββ αβαβ αβαβξ ψ φ ξ ψ φ ξ ψ φ ξ ψ φ ξ ψ φ ξ ψ φ . (A2)

 A similar cyclic permutation derives the symmetrical properties of Mijkl(ξ,ψ,ϕ),
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 M M M M M M= = = = =ααββ αβαβ βαβα βααβ αββα ββαα, (A3)

where the summation convention does not apply to Greek indices (e.g., α, β).
 We can find a normalized property of Aijkl(ξ,ψ,ϕ) from Eq. (9) as

( ) ( ) ( )
2 23 3 3 3 34 2 2 2 2 2 2

1111 3131 1212
1 3 1 1 2 1 1 3 2 11 1 1 1 1

, , , , L L L L L L L L L L

L L L L L

X X X X X X X X X XA A A x x x x x x x x x xξ ψ φ ξ ψ φ ξ ψ φ
= = = = =

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                  + + , , = + + = + + =                  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                    
∑ ∑ ∑ ∑ ∑

2
1=

( ) ( ) ( )
2 23 3 3 3 34 2 2 2 2 2 2

1111 3131 1212
1 3 1 1 2 1 1 3 2 11 1 1 1 1

, , , , L L L L L L L L L L

L L L L L

X X X X X X X X X XA A A x x x x x x x x x xξ ψ φ ξ ψ φ ξ ψ φ
= = = = =

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                  + + , , = + + = + + =                  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                    
∑ ∑ ∑ ∑ ∑

2
1= (A4)

( ) ( ) ( )
2 23 3 3 3 34 2 2 2 2 2 2

1111 3131 1212
1 3 1 1 2 1 1 3 2 11 1 1 1 1

, , , , L L L L L L L L L L

L L L L L

X X X X X X X X X XA A A x x x x x x x x x xξ ψ φ ξ ψ φ ξ ψ φ
= = = = =

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                  + + , , = + + = + + =                  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂                    
∑ ∑ ∑ ∑ ∑

2
1= . 

Then, a normalized property of Mijkl(ξ,ψ,ϕ) defined by Eq. (8) is

1111 3131 1212M M M+ +

( ) ( ) ( ) ( )
2 2 1

1111 3131 1212
0 0 1

W A A A d d d
−

 = + + ∫ ∫ ∫ , , , , , , , ,
π π

ξ ψ φ ξ ψ φ ξ ψ φ ξ ψ φ ξ ψ φ  (A5)

( )
2 2 1

1111 1133 1122
0 0 1

1W d d d M M M
π π

ξ ψ φ ξ ψ φ, ,
−

= = + + =∫∫∫ . 

A similar cyclic permutation derives the normalized properties of Mijkl(ξ,ψ,ϕ), 

 M2211 + M2222 + M2233 = M3311 + M3322 + M3333 = 1. (A6)

A combination of Eqs. (A5) and (A6) leads to

1111 1122 1133 2211 2222 2233 3311 3322 3333 3kkllM M M M M M M M M M= + + + + + + + + = , (A7)

1111 1212 1313 2121 2222 2323 3131 3232 3333 3klklM M M M M M M M M M  = + + + + + + + + = . (A8)

B. Isotropic and deviatoric fourth-rank tensors

 Components of the isotropic tensor are invariant with respect to the coordinate 
transformation.  We can make an isotropic fourth-rank tensor from an arbitrary fourth-rank 

tensor with the symmetry of  ijkl jikl ijlk= =π π π ,(32)
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 0
1 22ijkl ij kl ijklP P I  = +π δ δ , (B1)

where

 ( )1
1 215 ppqq pqpqP  = −π π , (B2)

 ( )2
1 330 pqpq ppqqP = −π π . (B3)

 A deviatoric part of the tensor can be obtained by subtracting the isotropic part from the 
original tensor,

 0'
ijkl ijkl ijkl = −π π π . (B4)

Substituting Eq. (7), i.e., 1 2 32ijkl ij kl ijkl ijklI M  = + +π π δ δ π π  into Eqs. (B2) and (B3), we obtain

1 2 3 1 2 32 9 6 3ppqq pp qq ppqq ppqqI M= + + = + +π π δ δ π π π π π , (B5)

1 2 3 1 2 32 3 12 3pqpq pq pq pqpq pqpqI M  = + + = + +π π δ δ π π π π π , (B6)

1 1 3
1
5P  = +π π , and 2 2 3

1
5P = +π π . (B7)

Thus, Eqs. (B1) and (B4) can be rewritten by using Eqs. (B2), (B3), (B5), (B6), and (B7),

 ( ) ( )0
1 3 2 3

1 125 5ijkl ij kl ijklI= + + +π π π δ δ π π , 

 ( )3
1 25

'
ijkl ijkl ij kl ijklM I = − +  

π π δ δ . 

C. Derivation of basic properties of deviatoric tensor ( )ijkl deviatoric
 π

 A combination of Eq. (14), i.e., ( )3
1 25

'
ijkl ijkl ij kl ijklM I = − +  

π π δ δ , and Eq. (8) lead to basic 

properties of the deviatoric tensor as follows:

 ( ) ( ) ( )3 3
1 2 3 3 05

'
kkll kkll kkll kk ll kklldeviatoric

M I = − + = − =  
π π π δ δ π , (C1)

[Eq. (14)]
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 ( ) ( ) ( )3 3
1 2 3 3 05klkl klkl kl kl klkldeviatoric

M I = − + = − =  
π π δ δ π . (C2)

 ( ) ( ) ( )2323 3 2323 23 23 2323 3 2323
1 125 5deviatoric

M I M = − + = −  
π π δ δ π , (C3)

 ( ) ( ) ( )2233 3 2233 22 33 2233 3 2233
1 125 5deviatoric

M I M = − + = −  
π π δ δ π . (C4)

However, when M2323 = M2233 from Eq. (A3), 

 ( ) ( )2323 2233deviatoric deviatoric
=π π . (C5)

 ( ) ( ) ( )1111 3 1111 11 11 1111 3 1111
31 25 5deviatoric

M I M = − + = −  
π π δ δ π , (C6)

 ( ) ( ) ( )1313 3 1313 13 13 1313 3 1313
1 125 5deviatoric

M I M = − + = −  
π π δ δ π , (C7)

 ( ) ( ) ( )1212 3 1212 12 12 1212 3 1212
1 125 5deviatoric

M I M = − + = −  
π π δ δ π . (C8)

However, when M1111 + M1313 + M1212 = 1 from Eq. (A6),

 ( ) ( ) ( )1111 1313 1212 0
deviatoric deviatoric deviatoric

+ + =π π π . (C9)

D.	 Rule	of	cubic	crystal	symmetry	for	the	expansion	coefficients	defined	by	Roe

 It can be estimated from Eqs. (8) and (9) and Table 1 that the component of Aijkl(ξ,ψ,ϕ) is a  
fourth-order polynominal in terms of the trigonometric function of Euler angles.  Therefore, β 
and γ in the exponents of Eq. (16) take the ranges of −4 ≤ β,γ ≤ 4.  The expansion coefficients 
between (a000)ijkl and (a444)ijkl may be shown in Eq. (16).  The rule of cubic crystal symmetry 
for the expansion coefficients (almn)ijkl may be summarized as follows:(23,24)

 ( ) ( )0 evenlmn ijkla  n≠ = , ( ) ( )0 oddlmn ijkl a  n= = , 

 ( ) ( )( )lmn lm nijkl ijkl
 a a −= , ( )2 0 0m ijkl a = , and ( ) ( )4 4 4 0

5
70m mijkl ijkla a= . 

Substituting Roe’s symmetrical properties into Eq. (18), we can find that the four-independent 
combinations of w000(a000)ijkl, w400(a400)ijkl, w420(a420)ijkl, and w440(a440)ijkl may be shown in Eq. 
(19), and that other combinations vanish.
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E. Derivation procedure for component of ijklπ   

 The longitudinal and transverse components of the overall piezoresistance tensor 1111π  [Eq. 

(21)] and  1122π   are derived as an example.  The component of a1122(ξ,ψ,ϕ) can be derived from 

the combination of Eq. (9) and Table 1,

 ( )
3 2 2

1122
1 21

L L

L

X XA .x xξ,ψ,φ
=

∂ ∂   =    ∂ ∂   ∑  (E1)

The substitution of Eq. (A1) into Eq. (17) leads to

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
2 2 1 1 1

4 2 0 0 0
400 1122 400 400 4 0 421122

0 0 1 1 1

28 32 31 1 1exp 0 exp 0 7 6 732 32 5 5 604 2
a A Z i i d d d  Z d  P P  P d

− − −

= − − = − + = + =∫∫∫ ∫ ∫, ,
π π

ξ ψ φ ξ ψ φ ξ ψ φ ξ ξ ξ ξ ξ ξ ξ ξ
π

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
2 2 1 1 1

4 2 0 0 0
400 1122 400 400 4 0 421122

0 0 1 1 1

28 32 31 1 1exp 0 exp 0 7 6 732 32 5 5 604 2
a A Z i i d d d  Z d  P P  P d

− − −

= − − = − + = + =∫∫∫ ∫ ∫, ,
π π

ξ ψ φ ξ ψ φ ξ ψ φ ξ ξ ξ ξ ξ ξ ξ ξ
π   (E2)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
2 2 1 1 1

4 2 0 0 0
400 1122 400 400 4 0 421122

0 0 1 1 1

28 32 31 1 1exp 0 exp 0 7 6 732 32 5 5 604 2
a A Z i i d d d  Z d  P P  P d

− − −

= − − = − + = + =∫∫∫ ∫ ∫, ,
π π

ξ ψ φ ξ ψ φ ξ ψ φ ξ ξ ξ ξ ξ ξ ξ ξ
π , 

where 

 ( )( )
( ) ( )0

!2 1
2 !

m
nm n

n mnZ Pn m
−+≡
+

ξ  (E3)

is the associated Legendre function with the orthogonal property,(25)

 ( ) ( ) ( )
1

1

0m m
n l P  P d n l

−

= =∫ ,ξ ξ ξ

 ( ) ( ) ( )( )
( ) ( )

1

1

!2
2 1 !

m m
n n

n m P  P d  n ln n mξ ξ ξ
−

+
= ≠+ −∫ .

 A similar calculation derives another component of ( )000 1122
2

5a =  and ( )440 1122
35

60a =− .  

Note that (a420)1122 = 0, because only fourth-order terms of exp(±i4ψ) are shown in Eq. (E1) (see 
Table 2).
 Therefore, the component of Eq. (19) associated with A1122(ξ,ψ,ϕ) is (see Table 3)
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2 2

1122 400 440
4 2 81

5 35 35
  M w w= + −π π . (E4)

 A similar calculation derives another component associated with A3311(ξ,ψ,ϕ)

 22
3311 400 440

16 516 21
5 35 35

  
M w w= − + ππ . (E5)

 Finally, the substitution of Eqs. (E4) and (E5) with the relation M1111 = 1 − (M1122 + M3311) [Eq. 
(10)] into Eqs. (11) and (14) leads to 

 ( ) ( )2
1111 1 2 3 400 420 440 3

32 12 2 16 5 8 55 35 w w w= + + + − +ππ π π π π . (E6)

 Equation (19) associated with A2233(ξ,ψ,ϕ) derives

 
2 2

2233 400 440
4 2 81

5 35 35
  M w w= − −π π . (E7)

 Using the relation M2222 = 1 − (M1122 + M2233), Eqs. (E4), (E7), (11), and (14) lead to

 ( ) ( )2
2222 1 2 3 400 420 440 3

32 12 2 16 5 8 55 35 w w w= + + + + +ππ π π π π . (E8)

 Equation (19) associated with A1122(ξ,ψ,ϕ) also derives

 ( ) ( )2
1122 1 3 400 440 3

4 21 705 35 w w= + + −ππ π π π . (E9)

 In the case of fiber texture, we can choose w420 = w440 = 0.  Therefore, we can derive from 
Eqs. (E6) and (E8) that the longitudinal piezoresistance tensor component is invariant with 
respect to the coordinate rotation around the axis of fiber texture, i.e., has a transversely isotopic 
property,

 ( ) 2
1111 2222 1 2 3 400 3

12 232 5 35 w= = + + + ππ π π π π π . [Eq. (21)]
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