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 In this study, the spectral amplitude coding optical code division multiple access (SAC- 
OCDMA) is proposed for streaming data over a wireless transmission channel.  A fiber-Bragg-
grating (FBG)-based parallel multiwavelength fiber laser is exploited as the light source, and 
a quasi-orthogonal M-sequence code as the signature address code is prewritten in the FBG-
based encoder to create an identifiable spectral label.  In free-space optics (FSO) systems, the 
experimental implementation of the proposed scheme verified that spectral labels resulting 
from an object s̓ signals could preserve clear sensing signals in the transmitted encoded spectral 
label.  After multiple spectral-label signals were passed through a real free-space channel in air 
at normal atmospheric temperatures, the results of the identification and sensing experiment 
showed that the autocorrelation (matched) and cross-correlation (unmatched) scenarios were 
tested to identify an individual object using the spectral-label decoder, and then unmatched 
noise interference was completely cancelled to sense successfully the object’s signal using a 
balanced photodetector.

1. Introduction

 The basic principle of optical communications is to convert electronic signals into optical 
signals, and then covert the optical signals back into electric signals through media transmission.(1–3)  
An optical fiber is generally adopted as the medium for transmission in traditional optical 
communications.  The method of using air instead of an optical fiber as the medium for two-
way information transmission of optical signals is called a free-space optic (FSO) system.(4–9)  
Using invisible light waves rather than traditional radio waves as carrier waves, FSO technology 
can be used to transmit data, voices, and video without an optical fiber as well as to prevent 
collision and electromagnetic interference in identification and sensing applications using 
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wireless optical communication instead of using radio frequency identification (RFID) in 
electromagnetic interference environments and scenarios such as airplanes, hospitals, and 
precision industries.  
 In current optical communication systems, increased network capacity and bandwidth 
are required as a result of the rapid development of information technology.  Therefore, a 
new multitasking technology called spectral amplitude coding optical code division multiple 
access (SAC-OCDMA) has been proposed to act as an individual signature address code 
using a quasi-orthogonal spectral pattern.  However, SAC-OCDMA schemes have not been 
experimented over free-space channels because the power attenuation resulting from wireless 
channel transmission and the cancellation of multiple access interference (MAI) have been 
investigated.(10–14)  Because an M-sequence codeword is characterized by quasi-orthogonality, 
the proposed SAC-OCDMA scheme using a fiber-Bragg-grating (FBG)-based fiber laser has 
high-capacity processing capabilities for nonsynchronized users and mitigates the problem of 
unmatched noise interference (i.e., leakage noise) when successfully implemented over FSO 
systems.  
 Fiber gratings are crucial in optical communication systems, and FBG is the most widely 
applied among the various types of fiber gratings.(15)  This system adopts a parallel multi-
wavelength fiber laser as the light source for encoders.(16,17)  In this study, spectral labels 
characterized by a unipolar maximum length sequence code (M-sequence code) were created 
using an FBG-based fiber laser and were assigned as signature address codewords to identify 
each object.  The individual spectral label of an M-sequence pattern was also successfully 
sensed with balanced (i.e., original and complementary parts) FBG-based detection.  In 
addition, the proposed FBG-based fiber laser configuration had immense power, high stability, 
and an independent temperature, and was capable of preventing mutual interference resulting 
from free-space channels.  Compared with the previous configuration with a broadband light 
source in a wired fiber channel,(2,3) a more stable and clearer spectral-label signal from an 
object can be obtained using an FBG-based spectral-label decoder with an M-sequence pattern 
and either data bit 1 or 0 can be retrieved by balanced detection.

2. Experimental Principles and System Architecture

 Figure 1 shows the spectral-label encoding architecture of the proposed scheme in the 
current experiment.  After a 980 nm pumped laser passed through an optical insulator, a 
1×2 coupler, two FBGs of different wavelengths, a 3 m erbium-doped fiber, and a 50:50 half 
reflector were used to generate multiwavelength lasers of 1546.68, 1549.74, and 1552.36 nm 
as the light source for the encoding end of the experiment.  Two optical signals with different 
coded wavelengths were transmitted using a 1 × 2 coupler connected to an electro/optic 
modulator (EOM).  To achieve improved performance with respect to signal-to-noise ratio 
and optical identification, the M-sequence code, characterized by quasi-orthogonality, was 
prewritten in the FBG-based spectral-label encoder and decoder as the signature address code.  
For experimental design and implementation, as shown in Fig. 1, Objects #1–2 were assigned 
and configured using the signature address codes for [1 1 0] and [1 0 1], respectively.  Here, 
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the signature address codes of [1 1 0] and [1 0 1] with the M-sequence pattern for Objects #1–2 
corresponded to the spectral labels of [λ1 λ2 0] and [λ1 0 λ3] as assigned by the FBG-based 
encoder, and the central wavelengths of the multiwavelength laser were set at λ1 = 1546.68, λ2 = 
1549.74, and λ3 = 1552.36 nm in the experiments.
 Figure 2 illustrates the spectral-label decoding architecture of the proposed scheme in this 
experiment.  The modulated spectral labels were transmitted and broadcast to the spectral-label 
decoder through the free space constituted by two collimators.  The spectral labels were then 
exported from the spectral-label decoder to a balanced photodetector (BPD), and the spectral 
label received by Object #1 was specifically designed for balanced detection by spectral-label 
decoder #1.  A BPD was adopted to conduct the correlation tests, unmatched noise interference 
from other users was deleted, and an oscilloscope was employed to correctly detect and sense 
the desired frequencies and signals of the spectral labels.
 The spectral-label encoding configurations for Object #1 = [λ1 λ2 0] and Object #2 = [λ1 0 λ3] 
are shown in Fig. 1.  The FBG is prewritten in the M-sequence pattern Xk and is expressed as

 X0 = [x0, x1, x2, ..., xM−1], (1)

where the M-sequence code pattern X0 is (0, 1) sequences of length M, assigned as the spectral-
label codeword of Object #1, such as the spectra-label codeword [1 1 0].  According to the 
inherent cyclic property of an M-sequence, the M-sequence code pattern of Object #k is 
expressed as

 Xk = Tk−1X0 = Tk−1[x0, x1, x2, ..., xM−1], (2)

where T k−1 is the cyclic shifting operator, carried out cyclically to the right processing by k−1 
places.  In other words, the k-th Object’s sequence Xk can be obtained by cyclic right shifting 

Fig. 1. Design and implementation of the proposed spectral-label encoding scheme.
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k−1 processing based on the original sequence X0.  Following the simple encoding example 
of Fig. 1, the other M-sequence spectral-label codeword of Object #2 can be obtained ([1 0 1]) 
by cyclic right shifting two places from the original sequence, [1 1 0].  In this experiment, the 
M-sequence code pattern of Xk is mapped to the coded spectral label of Ak in the wavelength 
domain and is expressed as

 Xk → Ak(λ),

 Ak(λ) = T k−1A0(λ) = T k−1[λ0, λ1, λ2, ..., λM−1], (3)

where Ak represents the spectral amplitude code of Xk.  In this experimental design, Object 
encoders #1 and #2 are assigned as [λ1 λ2 0] and [λ1 0 λ3], respectively, corresponding to [1546.68 
nm, 1549.76 nm, 0] and [1546.68 nm, 0, 1552.36 nm] by adjusting the selected FBG components 
in the reflected wavelength (1546.68, 1549.76, and 1552.36 nm) to create the coded wavelengths 
of Objects #1 and #2.  
 For the quasi-orthogonal property of the proposed spectral label with an M-sequence for 
a signature address code, the basic principle of unmatched noise-interference cancellation, 
resulting from the use of balanced photodetection, is applied.(18)  The receiver end is designed 
with a reciprocal and symmetrical architecture, which is illustrated in Fig. 2.  The proposed 
spectral-label decoders, consisting of an original and a complementary branch, are matched to 
the corresponding FBG-based encoders for Objects #1 and #2.  The coded signal is broadcast 
in free space to arrive at the collimation of the received end.  The receiver end is split into two 
branches by the 1 × 2 coupler.  One branch is directed into the first upper branch of the FBG-
based spectral-label encoder.  This is equivalent to multiplying the coded signal by the spectral-
label codeword Ak, and hence a correlation value of R(U)

AA is obtained in the upper photodiode.  
The second part of the signal is directed into the complementary FBG-based decoder and yields 
a correlation value of ( )L

AAR  in the lower photodiode.  The periodic cross-correlation between 
Objects #k and #r appearing in the upper branch is expressed as 

Fig. 2. Design and implementation of the proposed spectral-label decoding scheme.
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where A(λ) = [a0, a1, a2, ..., aM−1] denotes a spectral label of length M assigned as a codeword of 
Objects #k and #r, depending on the different subscripts k and r, respectively.
 Similarly, the periodic cross-correlation between Objects #k and #r appearing in the lower 
branch is expressed as
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where A(λ) = [a0, a1, a2, ..., aM−1] denotes the complementary spectral-label codeword of A(λ).
 The basic principle of the unmatched noise-interference cancellation effect, resulting from 
the use of a balanced photodetection approach in the proposed schemes, is that M-sequence 
code families have a periodic cross-correlation between Ak(λ) and Ar(λ) in the upper branch, 
which is equal to the periodic cross-correlation between Ak(λ) and Ar(λ) in the lower branch [i.e., 

( ) ( , )U
AAR k r  = ( ) ( , )L

AAR k r , for k ≠ r].  A receiver computing ( , ) ( , )AA AAR k r R k r−  for User #k 
eliminates the influence of unmatched noise interference produced by the other users.  Hence, a 
balanced detector for Object #k implements the correlation subtractions, as expressed in Eq. (6).
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 Following the subtraction of ( , )AAR k r  from RAA(k,r) in the balanced photodiode, the data 
bits of Object #k are sensed and extracted.  
 To investigate the unmatched noise-interference cancellation and to ensure reliable 
transmission over FSO systems, the autocorrelation and cross-correlation are measured from 
decoders of Objects #1 and #2 to verify the unmatched noise-interference cancellation when 
only the coded spectral Object #1 for Ak = [λ1 λ2 0] was transmitted.  Hence, the desired encoded 
spectral label for [λ1 λ2 0] may be monitored and measured before and after modulation by the 
EOM in this experimental design.  Different from the previous scheme, which was applied only 
in a wired environment,(13–15) the proposed scheme was tested to ensure reliable transmission 
over free space at normal atmospheric temperatures.  The transmission distance in this 
experimental setup was about 2 m.
 To pass through a real air gap of a free space channel in air at atmospheric temperatures, 
two scenarios of matched and unmatched spectral-label codewords are evaluated to measure 
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the results from the sensing decoder in the spectral powers of matched [λ1 λ2 0] and unmatched 
[λ1 0 λ3].  In this experiment, the Object #1 spectral-label encoder, configured by [λ1 λ2 0], 
transmitted only an analog signal of 1 MHz frequency, after which the autocorrelation and 
cross-correlation values were measured individually on the spectral-label decoder of Object 
#1 Xk = [1 1 0] and Object #2 Xr = [1 0 1].  The monitoring and measuring points of the 
experimental results are arranged and designed as shown in Fig. 3.
 Figure 4 shows the the spectral label s̓ spectrum of encoding pattern Xk = [1 1 0], configured 
before entering the EOM.  In addition, Fig. 5 shows the spectrum of the object being modulated 
by the EOM and then entering the free-space channel.
 The spectral range of the optical spectrum analyzer was regularly set at 1545–1555 nm 
with a resolution of 0.1 nm.  The spectral label s̓ spectrum of encoding pattern generated 

Fig. 3. (Color online) Monitoring and measuring points for optical spectral-label experiments.

Fig. 5. Spectrum of the object being modulated by 
the EOM and then entering the 2-m-long free-space 
channel.

Fig. 4. Spectrum of the spectral label encoding [1 1 0] 
pattern before entering the EOM.
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optical signals with penetration wavelengths of 1546.68, 1549.74 (i.e., shifting to 1549.76 after 
EOM component), and 1552.36 nm in a practical experiment, which represented λ1, λ2, and 
λ3, respectively.  The present and absent wavelengths corresponded to binary data bits 1 and 
0, which were prewritten in the FBG-based encoder to create the reflected and transmitted 
wavelengths, respectively.  Therefore, the SAC-based spectral-label codeword obtained in this 
study for Object #1 was [1 1 0].  To prove that the OCDMA system developed in this study 
effectively eliminated unmatched noise interference from other objects and correctly identified/
sensed the desired object signal, we used a spectral-label decoder, Xk = [1 1 0], which was 
matched with the spectral-label encoder and another spectral-label decoder of object Xr = [1 0 1], 
which was not matched and identified with the spectral-label encoder of object Xk = [1 1 0], for 
verification.  When only the spectral-label encoding of Object #1 was transmitted, the spectral-
label decoders of Objects #1 and #2 were individually used to measure the autocorrelation 
and cross-correlation results, respectively, to prove that the unmatched noise interference was 
cancelled.
 Figure 6(a) shows the upper branch spectrum obtained using spectral-label decoder #1 
Xk = [1 1 0], which was matched with the spectral-label encoder of Object #1, prewritten with 
Xk = [1 1 0].  The reflection wavelengths obtained were 1546.24 and 1549.32 nm, and the SAC-
based spectral-label codeword was [1 1 0].  No spectra were detected in the lower branch, and 
thus the SAC-based spectral-label codeword was [0 0 0] [Fig. 6(b)].  
 Spectral-label decoder 2, with a prewritten codeword of Xr = [1 0 1] that did not match the 
spectral-label encoder [1 1 0] of Object #1, was adopted to obtain the upper branch reflection 
spectrum [Fig. 7(a)] with a reflection wavelength of λ1 = 1546.22 nm and the SAC-based 
spectral-label codeword of [1 0 0].  The lower branch reflection spectrum is shown in Fig. 7(b), 
and a reflection wavelength of λ2 = 1549.30 nm and SAC-based spectral-label codeword of [0 1 0] 
were obtained.  There are some differences between the spectral-label encoder and decoder 
wavelengths as a result of imperfections arising from the manufacturing processes of the FBGs.

Fig. 6. Spectrum of spectral-label decoder #1 on (a) upper branch and (b) lower branch.

(a) (b)
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3.	 Results	of	Identification	and	Sensing	and	Discussion

 During this experiment, to extend the previous work of the authors on multiple access 
interference (MAI) cancellation over fiber-optic transmission lines,(10) an analog object signal 
generator was used to provide 1 MHz of analog electrical signals to the EOM.  If the spectral-
label decoder matched the encoded spectral label it received, then the object frequencies 
inputted by the object into the EOM would be demodulated.  However, if the spectral-label 
decoder did not match the spectral-label-encoded signals it received, then the BPD would not 
demodulate any object signals.  
 In the first experiment to measure the performance of autocorrelation over the free-space 
optical channel, the SAC spectral-label codeword [1 1 0] was entered and transmitted to a 
matched spectral-label decoder [1 1 0] through the free-space channel for demodulation.  Figure 
8(a) shows the BPD upper branch signals of spectral-label decoder #1.  Figure 8(b) presents the 
BPD lower branch signals of spectral-label decoder #1; no signals were detected according to Eq. (5).  
Figure 8(c) illustrates the correlation subtraction of spectral-label decoder #1 on the upper and 
lower branches of the BPD based on Eq. (6).  This result showed that a signal of −19 dB was 
detected at 1 MHz via the BPD when the analog signal of Object #1 was sensed and extracted.  
 In a second experiment to measure the performance of unmatched noise-interference 
cancellation (cross-correlation) over the free-space channel, SAC-based spectral-label 
codewords, Xk = [1 1 0], were entered and transmitted to an unmatched spectral-label decoder, 
Xr = [1 0 1], through the free-space channel for demodulation.  Figure 9(a) presents the BPD 
upper branch signals of spectral-label decoder #2, and a signal of –34.6 dB was detected at 1 
MHz.  Figure 9(b) illustrates the BPD lower branch signals of spectral-label decoder #2, and 
a signal of −24.6 dB was detected at 1 MHz.  Figure 9(c) shows the correlation subtraction of 
spectral-label decoder #2 from the upper and lower branches of the BPD based on Eq. (6).  This 
result showed that no signals were detected in the BPD when the analog signal of Object #2 was 
sensed and extracted.  

Fig. 7. Spectrum of spectral-label decoder #2 on (a) upper branch and (b) lower branch.

(a) (b)
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Fig. 9. (Color online) Signals of spectral-label decoder #2 on (a) BPD upper branch, (b) BPD lower branch, and (c) 
BPD correlation subtraction of upper and lower branches yielding no signal.

Fig. 8. (Color online) Signals of spectral-label decoder #1 on (a) BPD upper branch, (b) BPD lower branch, and (c) 
BPD correlation subtraction of upper and lower branches to obtain the analog object s̓ signal of 1 MHz.

(a) (b)

(c)

(a) (b)

(c)
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 With the FBG-based parallel multiwavelength fiber laser as the light source and the quasi-
orthogonal M-sequence code as the signature address code of the spectral label prewritten in 
the FBG-based encoder, the results showed that an encoded spectral label was modulated by the 
user’s electrical intensity using an EOM and then broadcast into the free space at the transmitter 
end.  On the receiving end, the original and complementary FBG-based spectral-label decoder 
prewritten in the M-sequence code pattern was used to filter out the encoded spectral label of 
the desired object.  Subsequently, the balanced direct detection was configured to retrieve the 
electrical signal of the desired object.  
 The BPD subtracted the signals of the upper and lower branches and converted the spectral 
labels into electric signals; then it successfully retrieved the object s̓ sinusoidal waveform of the 
input frequency of the correct simulation signal.  These results showed that this transmission 
system retrieved the correct object signal and was not influenced by unmatched noise 
interference, so even if the spectral-label codeword of the object was the same, the object s̓ 
signal was demodulated without interference.

4. Conclusions

 In this study, we adopted the architecture of SAC-OCDMA to identify and sense the 
frequencies of an object s̓ signal.  By using an FBG-based parallel multiwavelength fiber 
laser as the light source, each object had its own spectral label as a signature address code, 
and the spectral-label encoders and decoders of the objects were designed using an FBG 
component prewritten with the M-sequence pattern.  In this experiment, the unique spectral 
label of an individual object provided a means of identification from various objects.  The 
matched spectral-label decoder was configured to sense the desired object s̓ signal.  After the 
multiple spectral-label signals were passed through a real free-space channel 2 m in length, 
the autocorrelation and cross-correlation power values were obtained using the spectral-
label decoder with the M-sequence code pattern and then data bits 1 and 0 were retrieved by 
the balanced photodetector.  This experiment showed that unmatched noise interference was 
completely cancelled to successfully sense the object’s signal.
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