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 A kind of Galfenol-piezoelectric composite sensor is proposed, and its nonlinear 
magnetoelectric response characteristics are analyzed in this paper.  New nonlinear differential 
terms with fractional index are proposed to explain the hysteresis of Galfenol’s strain–magnetic 
field intensity (MFI) curves and the piezoelectric zirconate titanate (PZT)’s displacement–
voltage curves, and a nonlinear dynamic model for such a sensor under a harmonic magnetic 
field is developed when the electromagnetic interference (EMI) is considered.  The expression 
of the system’s dynamic response is obtained, and its bifurcation is discussed.  Finally, the 
simulation results are proved by experiments.  The theoretical and experimental results show 
that the intensity of EMI plays an important role in the system’s response.  These results may be 
helpful for the optimal design and improvement of Galfenol–piezoelectric composite sensors.

1. Introduction

 A highly sensitive magnetic sensor is an important component in modern electronic 
products.  It is widely used to measure magnetic field intensity (MFI) to determine current, 
location, direction, and other physical parameters.  The traditional magnetic sensor is a Hall 
component, which has good accuracy and a simple structure.  However, the Hall component 
requires an external power supply, and is easily affected by temperature.  The giant 
magnetostrictive-piezoelectric composite sensor is a new kind of magnetic sensor.  It has high 
accuracy and self-generating characteristics, and is used widely where the power supply is 
very difficult to apply.  The first kind of giant magnetostrictive material applied in sensors is 
Terfenol-D (Tb-Dy-Fe alloy).  Although Terfenol-D has high compressive strength (700 MPa), 
its tensile strength is only 28 Mpa.  It means that Terfenol-D cannot withstand tension load, 
which limits its application in engineering fields.  Galfenol is a novel giant magnetostrictive 
material.  It has both high compressive strength (700 MPa) and high tensile strength (500 MPa), 
which causes it be a promising material for sensors and actuators.
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 Many researchers have studied the characteristics of magnetostrictive-piezoelectric sensors.  
Prieto et al. reduced the hysteresis in magnetostrictive-piezoelectric magnetic sensors,(1) and 
improved their magnetic coefficients by removing the viscous interface.(2)  Ueno and Higuchi 
proposed a kind of highly sensitive and heat-resistant magnetic sensor using a magnetostrictive-
piezoelectric laminate composite.(3)  Huang et al. designed a new class of passive magnetic field 
sensors based on combinations of magnetostrictive and electroactive materials.(4)  In recent 
years, Zhang et al. have improved the magnetoelectric effects in magnetostrictive-piezoelectric 
composites combined with flux concentration effects.(5)  Elhosni et al. established a finite 
element method (FEM) model of magnetic field surface acoustic wave (SAW) sensors based on 
magnetostrictive-piezoelectric layered structures, and validated the model by experiments.(6)  
Xu et al. discussed the nonlinear response characteristics of giant magnetostrictive-piezoelectric 
composite sensors.(7)  Although many achievements in magnetostrictive-piezoelectric composite 
sensors have been reported,(8–15) theoretical results on the dynamic characteristics of the 
magnetostrictive-piezoelectric composite sensors subjected to electromagnetic interference (EMI) 
are few.
 There is always EMI in engineering fields, which can be regarded as a random perturbation.  
In this paper, a new Galfenol-piezoelectric composite sensor is proposed, and its dynamic 
responses under a harmonic magnetic field are analyzed when the EMI is considered.  A new 
differential term is introduced to describe the hysteretic phenomena of Galfenol’s strain–MFI 
curves.  The stability of the system is analyzed, and the effects of the EMI intensity on the 
system’s response are discussed.

2. Nonlinear Dynamic Model of Galfenol–piezoelectric Composite Sensor

 The structure of a Galfenol-piezoelectric composite sensor is shown in Fig. 1.  When 
the sensor is placed into a changing magnetic field, the Galfenol rod moves, and then the 
piezoelectric zircouate titanate (PZT) stack is subjected to changing pressure, which produces 
changing currents.  The Galfenol’s strain–MFI curves are shown in Fig. 2.  The curves clearly 
have hysteretic characteristics.
 In 1998, Jin et al. proposed a new nonlinear viscoelasticity model as follows to describe the 
hysteresis phenomena of Hertzian contact force F(x) in the collision process.(16) 

Fig. 1. St r uc t u re of Ga l fenol– piezoelec t r ic 
composite sensor.

Fig. 2. (Color online) Galfenol’s strain–MFI curves.
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 3 3
2 20( ) vF x k x c x x= + �  (1)

Here, we use the above model to describe Galfenol’s strain–MFI curves as follows:

 
3 3
2 21 2a H a H Hε = + � , (2)

where ε  is the strain, H is the MFI, and ai (i = 1,2) are the coefficients determined by the 
hysteretic loop.
 In addition, the displacement–voltage characteristics of PZT ceramics also cannot be 
regarded as linear.  In fact, even the polarized PZT ceramics also has slight hysteretic 
characteristics.  The displacement–voltage characteristics of PZT ceramics stacking are shown 
in Fig. 3.  
 Similarly, we can establish the displacement–voltage model of PZT as follows:

 
3 3
2 21 2U b x b x x= + � , (3)

where U is the output voltage of PZT stacking, x is the displacement of PZT stacking, and bi (i = 1,2) 
are the coefficients determined by the hysteretic loop.
 Now, we can establish the sensor’s dynamic model.  In this study, the Hamilton variational 
principle is applied to system modeling as follows:

 δS =
∫
δ(T1 + T2 + T3 + MK − U1 − U2 − U3 − MP −Wd +WOE)dt = 0, (4)

where Ti is the kinetic energy of the three materials, Ti =
1
2

∫ Li

0
ρiAi(

dxi

dt
)2dli , (i = 1,2,3), 1: PZT 

stacking; 2: elastic layer; 3: Galfenol rod.  Li is the length of the three materials, ρi is the density, 
Ai is the area, and xi is the displacement.  M K is the magnetic field energy of the Galfenol rod, 

Fig. 3. Displacement–voltage curves of PZT.
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2

KM B KdV= ⋅∫∫∫ , 0 sinK K t= Ω  is the intensity of the magnetic field; Ui is the potential 

energy of the three materials, 2
0

1
2
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i

E AU x dl
l

= ∫ , (i = 1,2,3), Ei is the elastic modulus; M P 

is the electric field energy of PZT, 11
3 33 33 10

1
2 2

LP AM E DdV E D dl= ⋅ =∫∫∫ ∫ , 33
1

UE
L

=  is 

the intensity of the electric field, U is the output voltage of PZT stacking, D33 is the electric 

displacement.  Wd is the work done by the system’s damp force, 1 2 3

0

L L L
d

qW cq dl
t

+ + ∂
=

∂∫ , 

1 2 3q x x x= + + , c is the damping coefficient of the structures; WOE is the work done by the 

outside excitation, 
0

L
OEW Fudx= ∫ , F is the stochastic perturbation caused by EMI, F = F̄ς(t), 

where ς(t) is the normal Gauss white noise.

 Let the displacement of the rod end be the system’s response q.  We can obtain the dynamic 

equation of the system’s response as

 q̈ + (2η + c2q
3
2 )q̇ + c1q + c3q

3
2 = K̄ sinΩt + eς(t), (5)

where c1 =

3∑
i=1

EiAi

(
3∑

i=1
ρiLiAi)2

, c2 =
πb0

3∑
i=1
ρiLiAi

, c3 =
πE1a0

A1
3∑

i=1
ρiLiAi

, K̄ =
δGKE3A3

3∑
i=1
ρiLiAi

, and e =
π2F̄

3∑
i=1
ρiLiAi

.

3. Dynamic Characteristics of the System

 We can obtain the drift and diffusion coefficients of the Ito stochastic process using the 
stochastic average method as follows.

 m(H) = (
De2

c1
− 2η)H − c2

π
(

2
c1

)
3
4 H

7
4  (6)

 σ2(H) =
De2

c1
H2  (7)

The averaged Fokker–Planck–Kolmogorov (FPK) equation of Eq. (5) is

 
2 2

2
1 [ ( ) ][ ( ) ]
2

f H fm H f
t H H

σ∂ ∂ ∂
= − +

∂ ∂ ∂
, (8)
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where f is the stationary probability density (SPD) of the system’s response.  Thus,

 
1

2
4 3 31 2 4 42 1

8 2( ) exp[ ( ) ]3
c

De Kc cf H AH HcDe
η

π
−= . (9)

 The numerical results of the system response are presented in Fig. 4, where c1 = 1000, c2 = 0.05, 
c3 = 0.3, D = 0.5, η = 0.01, and K = 0.5.  According to Eq. (9) and Fig. 4, we find that

1) p = 0 and q = 0 when H = 0, given that 2 2
1

1 1
2 2

H p c q= + .  Thus, the trivial solution H 

= 0 corresponds to the origin point (0,0) in the SPD map.
2) η is the linear damping coefficient, η ≥ 0; c1 is the system’s linear stiffness, c1 ≥ 0; and 

D is the intensity of normal Gauss white noise, D > 0.
3) There is a loop in the SPD map when K = 0.5 and e = 0, which is shown in Fig. 4(a).  

It means that the system’s motion and the output voltage are both periodic when the 
composite sensor is in a harmonic magnetic field and there is no EMI.

4) There is a crest and a loop in the SPD map when K = 0.5 and e = 0.2, which are shown 
in Fig. 4(b).  It means that the system’s motion has two possibilities, one is a periodic 
motion with large amplitude, and the other is vibration near the balance point (0,0).  
The system’s motion is determined by the initial conditions.

5) In the variation process of the system’s parameters, the system’s response can jump 
from balance point to periodic orbits under the outside excitation, which causes the 

Fig. 4. (Color online) Probability density of the system’s response when K = 0.5 and (a) e = 0, (b) e = 0.2, (c) e = 0.5, 
and (d) e = 1.

(a) (b)

(c) (d)
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bifurcation of the system.  
6) There are a pick and a platform in the SPD map when K = 0.5 and e = 0.5, which are 

shown in Fig. 4(c).  The probability of the pick is higher than that of the platform, 
which means that the system should vibrate slightly near the balance point (0,0).

7) There is a platform in the SPD map when K = 0.5 and e = 1, which is shown in Fig. 
4(d).  Each point in the platform has a high probability.  That is, the system’s response 
can appear in any point in the area, which means that the system’s motion is random.  

 The experimental results for a Galfenol-piezoelectric composite sensor subjected to 
harmonic and random magnetic excitations are shown in Fig. 5.  We also note that the system’s 
response becomes random when the noise’s intensity further increases.

Fig. 5. (Color online) Output voltage of the composite sensor when  K = 0.5 and (a) e = 0, (b) e = 0.2, and (c) e = 0.5.

(a)

(b)

(c)
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4. Conclusions

 A kind of Galfenol-piezoelectric composite sensor is proposed, and its nonlinear 
magnetoelectric response characteristics are analyzed in this paper.  New nonlinear differential 
terms with fractional index are proposed to explain the hysteresis of Galfenol’s strain–MFI 
curves and PZT’s displacement-voltage curves, and a nonlinear dynamic model for such a sensor 
under a harmonic magnetic field is developed when the EMI is considered.  The expression 
of the system’s dynamic response is obtained, and its bifurcation is discussed.  Finally, the 
simulation results are proved by experiments.  The theoretical and experimental results show 
that the intensity of EMI plays an important role in the system’s response: when the intensity 
of EMI is sufficiently small, the system’s motion is periodic, and the sensor can work properly; 
when the intensity of EMI is sufficiently large, the system’s motion becomes random, and the 
system’s stability is destroyed.  
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