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	 In the development of Internet of Things (IoT), network security has received increasing 
attention.  Many network attacks are performed through the sensors.  Among the various 
cyberattacks, distributed denial-of-service (DDoS) attacks represent one of the most serious 
types.  DDoS attacks should not be underestimated in terms of the loss they may cause.  In this 
study, we integrated Apache Spark, a big-data computing framework, with a detection model 
based on a back-propagation artificial neural network.  Thanks to the capacity of a big-data 
computing framework for mass historical data, computation of the characteristics required for 
the learning of the detection model can be performed in a real-time manner.  An artificial neural 
network model is perfect for DDoS detection, owing to its good scalability and its advantage 
of restricting the expansion of computing resources consumed as data volume increases.  This 
eliminates the problems related to traditional approaches to DDoS signature computing, where 
mass data can take considerable time to compute and can even overwhelm a system.  The results 
of this study show that the trained artificial neural network achieved a detection rate as high as 
99.80% and the real-time detection system achieved a detection rate of 87.18%.  Compared with 
other studies in this field, it is clear that the proposed approach provides effective detection of 
DDoS attacks, and that the incorporation of Apache Spark, the open-source clustering big-data 
computing framework, allows more computers and more Kafka Producers receiving packets to 
be used to form an even larger detection system capable of dealing with increasingly huge and 
diverse DDoS attacks.  

1.	 Introduction

	 The rapid development of information technology has led to people’s significantly increased 
use of the Internet, and as a result, a number of cyber security issues have emerged.  New IoT 
items are not just a target in themselves for attackers.  A more dangerous option exists in such 
devices.  The growing popularity of wireless sensor networks increases the risk of security 
attacks.  One of the most common and dangerous types of attack that takes place these days 
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in any electronic society is a distributed denial-of-service (DDoS) attack.  Due to the resource 
constraint nature of mobile sensors, DDoS attacks have become a major threat to its stability.
	 DDoS attacks, a cyberattack technique,(1) involve occupying the resources of a targeted host 
by a large number of accessing operations, and they can slow down services if not disrupt them.  
Currently, there are no effective defenses that provide 100% detection and blockage of DDoS 
attacks.  These types of attacks are usually conducted through zombie networks consisting of 
many virus-infected zombie computers, and use IP spoofing to disguise the IPs from which 
the attacks are launched, making it difficult to track the sources of these attacks.  At present, 
without an effective mechanism for identifying where attacks originate, organizations using an 
intrusion detection system (IDS), an intrusion prevention system (IPS), or firewall as a barrier 
can often erroneously deny users who are not attackers.  Some other organizations may decide 
to increase their hosts’ performance and their networks’ bandwidth as a passive alternative that 
mitigates the impact of a possible attack.  However, it is a reality that upgrading hardware and 
networks can never keep up with an attacks’ growing power, inflicting organizations with great 
losses.(2)

	 Currently, to mitigate the impact caused by denial-of-service (DoS) attacks and DDoS 
attacks, these attacks are mainly dealt with by source tracking and intercepting.(2)  However, 
since DDoS attacks may come from any corner of the world and are launched from tens of 
thousands of zombie computers, identifying and intercepting them one by one is an extremely 
time- and resource-consuming task.  To address this issue pragmatically, it is crucial to endow 
organizations with a real ability to discern normal flow from abnormal flow.
	 A competent anomaly-based detection system can anticipate unknown attacks, if it is 
provided with sufficient training data.  The conventional methods of anomaly-based detection 
aimed at DDoS attacks, however, either involve complicated algorithms or are inadequate for 
learning from mass historical data because a single machine is unable to finish the required 
computation in a reasonable timeframe or to provide sufficient computing resources.  Therefore, 
in this study we tried to integrate detection with a big-data computing framework, Spark 
Apache.  The proposed platform performs in-memory computing so as to prevent computational 
bottlenecks by significantly reducing hard-drive accessing operations for iterative computation, 
with the hopes of addressing the above-mentioned problems.  This uses the advantages of the 
big-data computing framework and increases practicability by incorporating additional relevant 
elements.
	 In this study we integrate Apache Spark, a big-data computing framework, with an artificial 
neural network for attack detection.  This approach is different from traditional detection 
because it has improved efficiency in integrating and analyzing historical data, thanks to its 
big-data computing ability, and incorporates an artificial neural network for learning, so that 
the resulting detection system is able to identify attack-associated flows.  Finally, the Center 
for Applied Internet Data Analysis (CAIDA) DDoS Attack 2007 Dataset was used to simulate 
attack-associated network flows, and the 1999 Defense Advanced Research Projects Agency 
(DARPA) Intrusion Detection Evaluation Data Set was used to simulate normal network flows, 
in order to evaluate the approach of this study in experimental settings.



Sensors and Materials, Vol. 30, No. 4 (2018)	 859

2.	 Related Works

2.1	 DDoS attack

	 DoS attacks, a type of cyberattack, attempt to use a large number of requests to occupy 
a network and a host’s resources, thereby slowing down or disrupting its services.  These 
attacks are often launched from zombie computers that have been affected by viruses and are 
uncontrolled, making it difficult for the attacked parties to track or intercept them.  DoS attacks 
conducted through a zombie network consisting of two or more zombie computers are referred 
to as DDoS attacks.(3) These attacks are usually launched from a large number of virus-infected 
zombie computers, and their power is proportional to the number of zombie computers involved.  
In recent years, in response to the popularity of the Internet, modern computers are greatly 
superior to their precursors in terms of performance.  Thus, current DoS attacks are mostly 
distributed ones, in order to have sufficient power to paralyze their targets.

2.2	 Methods for detecting DDoS attacks

	 Intrusion detection may be divided into two major types, namely, signature-based detection 
and anomaly-based detection.(3)  Signature-based detection is mainly based on abnormal 
signature databases that are built using past attack-associated behaviors and allow it to identify 
malconduct according to the signatures recorded in these databases.  Meanwhile, anomaly-
based detection involves machine learning where data sets are used for training so as to enable 
machines to recognize attack-associated behaviors.  Anomaly-based detection is particularly 
powerful when detecting zero-day attacks and unknown attacks.(4–7)

2.3	 Artificial neural networks

	 An artificial neural network is a parallel computing model similar to a human nervous 
system, and it is supported by an information processing technique inspired by the human brain 
and nervous system.  Such a network is also known as a parallel distributed processing model 
or a connectionist model.(6)  Artificial neural networks are composed of processing elements 
(PEs), which are their basic components.  Inputs in an artificial neural network are processed 
by summation functions, activity functions, and transfer functions into outputs.  These transfer 
functions and activity functions are what differentiate different neural network models.
	 Back-propagation neural networks are currently the most representative and most extensively 
used type of neural network.  A back-propagation artificial neural network features additional 
hidden layers and the use of smooth, differentiable nonlinear transfer functions, which address 
the failure of sensors in solving the exclusive-OR problem.  A back-propagation artificial neural 
network has a similar architecture to a supervised learning network and a feedforward network.  
It primarily relies on computation using the gradient steepest descent method, from which 
weights are fine-tuned, thereby minimizing deviation between its inputs and outputs.  It may be 
termed as a mapping between inputs and outputs.  A back-propagation artificial neural network 
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usually uses a sigmoid function as its activity function, which is

	 p (x)=
1

1+e−x .	 (1)

	 During operation, a back-propagation artificial neural network performs both forward 
propagation and backward propagation.  Forward propagation relates to a process where 
data are inputted from the input layer, followed by being weighted, before being propagated 
to the hidden layer, and then transfer functions are used to calculate outputs and deviations 
corresponding to individual neurons.  In the event that forward propagation fails to receive the 
expected outputs, the backward propagation stage begins to apply the actual outputs and the 
expected outputs to the energy function, and the gradient steepest descent method is used for 
correction of the weighted values.  These two directions of propagation can never take place 
at the same time. Throughout the training, forward and backward propagations are alternately 
performed for correction of the weights, so as to obtain an optimal set of weighted values, 
whereas only forward propagation is used to produce outputs during testing.

2.4	 Apache Spark

	 Apache Spark is an open-source big-data computing framework developed by AMPLab of 
the University of California, Berkeley.  Implementing in-memory computing, Apache Spark is 
100 times faster than the traditional approach of Hadoop MapReduce that stores data in a hard 
drive, and it allows repeated inquiry of data in the memory, making it suitable for machine 
learning algorithms.(8)

	 Apache Spark is developed from Hadoop MapReduce but it does not need to write data 
generated during computation to a hard drive like MapReduce does.  MapReduce must save 
data from computation to a hard drive, which is often a bottleneck in terms of I/O performance.  
Apache Spark can register the data generated during computation in a memory.  Since memory 
operates much faster than a hard drive, the overall computing speed can be significantly 
improved.  This improvement in speed is even more evident in operations that need to be 
performed repeatedly, as with iterative computation in machine learning, and this advantage 
makes Apache Spark more suitable for machine learning.(9)

3.	 Methods

3.1	 Architecture of detection system

	 The detection system proposed in this study is composed of five computers, as shown in Fig. 
1.  Therein, one Master computer controls the cluster while the four Slave computers perform 
distributed computing.  These computers play their respective roles in the cluster as follows:
A.	Master: Hadoop Distributed File System (HDFS) Name Node, HDFS Secondary Name 

Node, Kafka Server, Apache Spark, ZooKeeper Server
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B.	 Slave1: HDFS Data Node, Worker
C.	 Slave2: HDFS Data Node, Worker
D.	Slave3: HDFS Data Node, Worker 
E.	 Slave4: HDFS Data Node, Worker

3.2	 Workflow of detection system

	 In this study, we employed a system architecture as shown in Fig. 2.  Our detection analysis 
included six stages: (1) packet capture, (2) signature calculation, (3) data normalization, (4) data 
set building, (5) neural network check model, and (6) HDFS operation.
	 Experiments were conducted based on the seven signatures used for identifying DDoS 
attacks as defined by researchers(5) using the UCLA Dataset.  During the experiments, these 
seven parameters showed significant variation when attacks occurred, and the accuracy was as 
high as 97%, demonstrating that the system effectively detected DDoS attacks.
	 DDoS attacks are attacks coming from distributed sources, and one master computer 
may receive attacks from various sources.  In view of this, during detection, flows with 
identical targets and sources must be integrated so as to facilitate the subsequent calculation 
of signatures.  On the basis of the research of Oshima et al. in 2009,(10) where window sizes 
for computation were set at 500, 1000, 2500, and 5000, we first found that in our experiments 
with these settings, when signature computation was conducted on the data set Normal using 
a window size of 500, more than half of the total flow-integration sessions received only one 
datum or no datum with a consistent source and target IP addresses, making calculation of 
the seven signatures impossible.  Given the fact that more than half of the signatures became 
meaningless and consumed computing resources in vain, we decided to remove the window size 
of 500 from the experiments.  Furthermore, in view of the fact that training the artificial neural 
network would be time-consuming, in this study, we also removed the window size of 2500 
and only kept window sizes of 1000 and 5000 to save time, and experiments were conducted to 
identify the optimal window size.

Fig. 1.	 Network architecture of the detection system.
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4.	 Experiments and Analysis

4.1	 Experimental settings

	 In this study, we used a data set combining the 1999 DARPA Intrusion Detection Evaluation 
Data Set and the CAIDA DDoS Attack 2007 Dataset.  The former has only nonattacking flows 
in Week 1 and Week 3, while the latter only has attack-associated flows.  Unlike other data sets 
that usually have mixed flows, these two selected datasets allow a clear distinction between 
attacking and non-attacking flows in experiments, which is favorable for assessment in our test 
stage.

4.1.1	 Normal

	 The 1999 DARPA Intrusion Detection Evaluation Data Set, compiled by Lincoln Lab, 
Massachusetts Institute of Technology, was used for evaluating the efficiency of intrusion 
detection.  It includes network flows collected over five weeks.  The first three weeks provide 
training data, and the latter two weeks provide test data.  Week 1 and Week 3 have normal 
network flows without any attacks.  In this study, we used data from Week 1 and Week 3 as 
normal network flows involving no attacks.

Fig. 2.	 Detection workflow.
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4.1.2	 Attack

	 The CAIDA DDoS Attack 2007 Dataset contains one-hour network flows from August 
4, 2007 (from 20:50:08 UTC to 21:56:16 UTC), and has a size of 21  GB.  All non-attacking 
components have been removed and only components related to DDoS attacks and the attacked 
host’s responses are left, making it a data set containing only flows related to DDoS attacks.

4.2	 Experiment methods

	 In this study, we included two stages of experiments.  For the first stage, data were divided 
into two parts based on time, that is, 80% as training data and 20% as test data.  The training 
data came from Monday to Thursday in Week 1, Week 3 of DARPA 1999, and the first 48 min 
of CAIDA2007.  The test data came from Friday in Week 1 and Week 3 of DARPA1999, and 
the last 12 min of CAIDA2007.  The optimal window size and network model were found by 
adjusting the window size, the neural network’s learning rate, the number of neurons in the 
hidden layer and the max iterations.  For the second stage, the optimal parameters identified 
in the first stage were taken and recombined into a 1-minute data set including normal and 
attack-associated flow packets for use in the experiments.  Seven experiments were conducted.  
Experiments 1, 3, 5, and 7 used only normal flows, each with a duration of 13.5 s and 
Experiments 2, 4, and 6 used attack-associated flows, each with a duration of 2 s.  The objective 
was to determine whether a trained neural network could forecast unknown situations.

4.3	 Results of experiments

4.3.1	 Experiments in Stage 1

	 In first stage of experiments, the average detection results for individual network parameters 
with a window size of 1000 are shown in Table 1, and the average detection results for 
individual network parameters with a window size of 5000 are shown in Table 2.  The average 
detection results with window sizes of 1000 and 5000 are shown in Table 3.

Table 1
Average detection results for individual network parameters with a window size of 1000.

Results 
Parameters 

Neurons in hidden layer Learning rate Max iterations
5 9 18 0.1 0.5 1.0 3000 5000 7000

Accuracy 93.22% 85.60% 98.71% 90.66% 92.27% 94.60% 92.27% 92.27% 92.99%
True positive rate 93.35% 85.75% 98.93% 90.81% 92.45% 94.76% 92.42% 92.47% 93.13%
True negative rate 85.44% 75.55% 85.08% 81.31% 80.66% 84.11% 82.64% 79.46% 83.97%
False positive rate 14.56% 24.45% 14.92% 18.69% 19.34% 15.89% 17.36% 20.54% 16.03%
False negative rate   6.65% 14.25%   1.07%   9.19%   7.55%   5.24%   7.58%   7.53%   6.87%
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Table 3
Average detection results with window sizes of 1000 and 5000.
Window size Accuracy True positive rate True negative rate False positive rate False negative rate
1000 92.51% 92.68% 82.02% 17.98% 7.32%
5000 97.28% 97.33% 87.55% 12.45% 2.67%

Table 2
Average detection results for individual network parameters with a window size of 5000.

Results 
Parameters

Neurons in hidden layer Learning rate Max iterations
5 9 18 0.1 0.5 1.0 3000 5000 7000

Accuracy 99.80% 98.82% 95.26% 99.14% 96.01% 98.73% 98.98% 98.35% 96.54%
True positive rate 99.81% 98.84% 95.28% 99.16% 96.02% 98.75% 99.00% 98.37% 96.56%
True negative rate 91.06% 86.15% 87.68% 88.62% 89.56% 86.71% 88.54% 87.91% 88.44%
False positive rate   8.94% 13.85% 12.32% 11.38% 10.44% 13.29% 11.46% 12.09% 11.56%
False negative rate   0.19%   1.16%   4.72%   0.84%   3.98%   1.25%   1.00%   1.63%   3.44%

4.3.2	 Experiments in Stage 2

	 In second stage of experiments, Figs. 3–9 are real-time detection results of Experiments 1–7, 
respectively.  The data for real-time detection in the seven experiments are summarized in Table 4.

5.	 Discussion

	 Table 4 summarizes data obtained from seven experimental trials in real-time detection.  
Compared with the results of the experiments in Stage 1 that also used a window size of 5000 
and the same artificial neural network parameters, it is observed that the accuracy, true positive 
rate, and true negative rate decreased by 12.669, 12.253, and 18.882%, while the false positive 
rate and false negative rate increased by 18.882 and 12.253%, respectively.
	 The experiments in the second stage used the same artificial neural network model, but 
their results are substantially inferior to those from the experiments in the first stage.  Possible 
reasons for this difference include: (A) the randomly recombined network flows were unknown 
to the artificial neural network detection system, so the detection rates decreased, and (B) owing 
to the limit imposed by the Timeout value of the Apache Spark real-time detection system, the 
experiments using some specific window sizes could not meet the predetermined number of 
packets, and the detection rates were thus adversely affected.
	 As can be seen in the results of the experiments, either in Stage 1 or 2, most of the false 
positive rates are greater than the false negative rates.  This means that the accuracy was higher 
when detecting attacks than when discerning nonattacking signatures.  The possible reasons for 
this include the following.  (A) There was a wide difference between the numbers of samples of 
attacking and nonattacking signatures.  For example, in the training data using a window size of 
5000, there were 74920941 samples related to attacking signatures and 151987 samples related 
to nonattacking signatures.  If errors occurred in the nonattacking situations, then the increase 
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Fig. 3.	 (Color online) Real-time detection results of Experiment 1 (Nonattacking).

Fig. 4.	 (Color online) Real-time detection results of Experiment 2 (Attacking).

Fig. 5.	 (Color online) Real-time detection results of Experiment 3 (Nonattacking).

Fig. 6.	 (Color online) Real-time detection results of Experiment 4 (Attacking).

Fig. 7.	 (Color online) Real-time detection results of Experiment 5 (Nonattacking).
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in the error rate would be greater than that in the attacking situations.  (B) In this study, we 
performed detection based on anomalies but not set rules and conducted classification according 
to signatures because this approach would be favorable to me detection of zero-day attacks of 
unknown types and using unknown methods.  This means, however, that in certain situations, 
misjudgments could easily happen when the identified signatures of a nonattacking flow are 
similar to those of an attacking flow, and vice versa.  For example, remote monitoring requires 
the regular transmission of a large number of packets with a fixed size and this could be 
identified as an attack.  In contrast, packets related to a real attack are unlikely to be considered 
as normal packets.  This is mainly because if an attack has a rate similar to that of normal 
packets, its power and impact would be significantly reduced.

6.	 Conclusions

	 In this study, we aimed to provide a fast and effective way to detect DDoS attacks.  The 
detection of these attacks is difficult because their sources are hard to track and their forms 
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Fig. 8.	 (Color online) Real-time detection results of Experiment 6 (Attacking).

Fig. 9.	 (Color online) Real-time detection results of Experiment 7 (Nonattacking).

Table 4
Summary of real-time detection results.

Accuracy True positive rate True negative rate False positive rate False negative rate
1 (Nonattacking) 70.27% — 70.27% 29.73% —
2 (Attacking) 88.02% 88.02% — — 11.98%
3 (Nonattacking) 83.33% — 83.33% 16.67% —
4 (Attacking) 85.33% 85.33% — — 14.67%
5 (Nonattacking) 76.67% — 76.67% 23.33% —
6 (Attacking) 88.98% 88.98% — — 11.02%
7 (Nonattacking) 65.12% — 65.12% 34.88% —
Overall Results 87.18% 87.61% 72.86% 27.14% 12.39%
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are diverse.  It is impossible to accurately identify attacks using only one or a few signatures, 
and traditional approaches like an IPS, IDS, and firewalls have been proven to be ineffective in 
protecting against these attacks.
	 We used a back-propagation artificial neural network for this study, and obtained a 
detection rate as high as 99.80% in our Stage 1 experiments, while true positive, true negative, 
false positive, and false negative rates were 99.81, 91.06, 8.94 and 0.19%, respectively.  The 
experiments in the second stage were conducted by recombining the parameters for Stage 1 
into a 1-min-long data set of network flows and using a real-time detection system.  The best 
accuracy obtained was 87.18%, while true positive, true negative, false positive, and false 
negative rates were 87.61, 72.86, 27.14, and 12.39%, respectively.  As the results from Stage 2 
were inferior to those from Stage 1, it is clear there is still room for improvement of the artificial 
neural network model in terms of replicability and the Timeout value setting of the detection 
system.
	 As demonstrated by the results from the two stages, most of the false positive rates were 
higher than the false negative rates.  Although the high false positive rates would not open the 
system to attacks, they blocked normal users outside, causing inconvenience.  On the other 
hand, the false negative results mean that attacks were likely to pass the detection system, 
and although the false negative rates were relatively low, their consequences should not be 
underestimated.  Like accuracy, these two kinds of error detection can be improved by adjusting 
the artificial neural network’s parameters and increasing the training data volume.
	 There have been many studies on using artificial neural networks for DDoS detection.  
While the earlier studies obtained overall accuracies similar to those of this study, this study 
differentiated itself by integrating an artificial neural network with a big-data computing 
framework, and since the framework is easy to build and has good scalability, it allows more 
computers and more Kafka Producers receiving packets to be incorporated to form an even 
larger detection system capable of dealing with increasingly huge and diverse DDoS attacks.  
In addition, the use of such a big-data computing framework promises fast processing of 
mass historical data.  This means that more training data can be added in the future to further 
improve its accuracy and replicability.
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