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	 In this paper, we present a stepwise adjustment of the constrained application protocol 
observing period (SACOP) for Internet of Things (IoT) applications using wireless sensor networks 
(WSNs), which dynamically adjust observing periods depending on the Rx queue status of the 
constrained application protocol (CoAP) client.  The operation of SACOP consists of the following 
two consecutive phases: overflow alert and observing period adjustment.  In the former phase, 
a client sends a buffer overflow alert when the queue of the client reaches the predefined queue 
threshold.  In the latter phase, the servers change their own observing period level depending on 
whether or not they receive a buffer overflow alert message.  Therefore, SACOP can significantly 
reduce the number of dropped messages caused by buffer overflow.  A simulation showed that 
SACOP achieved a higher network performance than the legacy approach with regard to the 
number of dropped messages. 

1.	 Introduction

	 Recently, the Internet of Things (IoT) has received considerable attention from both academia 
and industry.  In the IoT world, remote monitoring and control using wireless sensor networks 
(WSNs) is a representative application, and resource-constrained devices are generally used due 
to concerns about cost.(1) To support web service for constrained devices, the Internet Engineering 
Task Force (IETF) Constrained Restful Environments (CoRE) working group has developed the 
constrained application protocol (CoAP).  CoAP is a specialized web transfer protocol designed to 
meet the requirements of simplicity and low overhead in resource-constrained environments.(2)

	 In general, a WSN is composed of a massive number of sensor devices, communications among 
which are likely to cause network congestion.  CoAP supports a basic form of congestion control 
through the exponential backoff mechanism, and CoAP Simple Congestion Control/Advanced 
(Cocoa), which is the advanced version of CoAP, improves the congestion control functionality of 
CoAP by using real-time retransmission timeout (RTO) measurements.(3)

	 CoAP and Cocoa commonly try to mitigate congestion by reducing the number of 
retransmissions of servers (i.e., sensor devices).  However, most IoT applications necessarily use 
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the CoAP observe option, by which numerous sensor devices (i.e., servers) periodically send 
their observing messages to the gateway (i.e., client).  This observe option does not require any 
acknowledgement or retransmission.  Therefore, such an approach cannot be a suitable solution for 
the congestion problem in IoT applications. 
	 In this paper, we propose a stepwise adjustment of the constrained application protocol 
observing period (SACOP) for remote monitoring and control applications using WSNs.  SACOP 
adjusts the observing period of CoAP servers in a step-by-step manner according to the buffer 
status of the client.(4) The operation of SACOP consists of the following two consecutive phases: 
overflow alert and observing period adjustment.  In the former phase, the client alerts the servers 
that its buffer overflow is imminent by broadcasting a buffer overflow alert (BoA) message, when 
its queue status reaches a predefined threshold.  In the latter phase, servers that have received a 
BoA message adjust their observing period level, op(i) upward, or, as we shall see, the servers can 
adjust op(i) downward in this phase by inference in response to a dearth of BoA messages from the 
client.  Therefore, SACOP can significantly reduce dropped messages caused by buffer overflow at 
the client side. A simulation showed that SACOP yields better performance than the legacy CoAP 
with regard to the number of dropped messages. 
	 The rest of this paper is organized as follows.  Section 2 presents the design of SACOP.  Results 
of simulations and conclusions are given in Sects. 3 and 4, respectively. 

2.	 Design of SACOP

	 SACOP prevents buffer overflow at the CoAP client side by adjusting the observing period of 
the CoAP servers.  SACOP includes two operational phases: overflow alert and observing period 
adjustment. 
	 In the first phase, the client configures the threshold value of its own buffer queue, which is 
a reference value for determining whether a buffer overflow event is imminent.  Then, the client 
waits for messages transmitted from the associated servers.  When the queue status of the client 
reaches the predefined queue threshold, it broadcasts a BoA message to alert for the upcoming 
buffer overflow event. 
	 In the observing period adjustment phase, SACOP uses two types of adjustment procedures 
according to the entity that triggers the adjustment procedure: client-initiated adjustment and 
server-initiated adjustment.  The former is used for reducing the observing period of servers, while 
the latter extends it.  The observing period is adjusted in a step-by-step manner.  For this, SACOP 
uses “observing period level”, op(i), i ∈ [0, m], where m is a preconfigured number of observing 
periods.  If the op(i) changes, the observing period is calculated afresh as follows. 

	 Tobserv(op(i)) = Tobserv,init × op(i),	 (1)

where Tobserv,init is the initial observing period when i = 0 and is preconfigured by the system.  
Figure 1 shows the overall operation of the observing period adjustment phase, for which the 
servers use two variables: Send_msg_cnt and Max_msg_cnt, which respectively indicate the 
number of transmitted messages and the maximum number that Send_msg_cnt can attain.  The 
server increases its Send_msg_cnt by 1, whenever transmitting the observing message to the client.  
If Send_msg_cnt reaches Max_msg_cnt, it is initialized to 0. 
	 When the server receives the BoA message from the client, the client-initiated adjustment 
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procedure is triggered and it checks i.  The server increases op(i) if i is not m.  Otherwise it 
maintains the current observing period.  Then, the server initializes Send_msg_cnt to 0. 
	 The server-initiated adjustment uses the concept of “aging” with which the CoAP server 
reduces the observing period by itself.  As long as the server does not receive a BoA message, it 
repeatedly transmits messages with the same observing period and increases its Send_msg_cnt.  If 
Send_msg_cnt reaches the Max_msg_cnt, the server checks i.  If i is not 0, it decreases its op(i) by 
one level. 

3. 	 Performance Evaluation

	 In this section, we describe the evaluation of the performance of SACOP using MATLAB.  To 
verify the superiority of SACOP, we compare SACOP with the legacy CoAP.  In this simulation, 
we assume that one client and multiple observing servers communicate with each other using 
CoAP within a 10 × 10 m2 square room.  We specify the queue size to 1 MB and the clock rate to 
1 MHz.  The threshold value of the buffer queue is specified to 0.9 MB, which is 90% of the queue 
size, and Max_msg_cnt is set to 5.  The detailed parameters are listed in Table 1. 
	 Figure 2 shows the variation of the observing period.  In the simulation, we set the number of 
devices to 15 and the simulation time to 100 s.  The legacy CoAP maintains the same observing 
period throughout the entire simulation time. However, with SACOP, the observing period 
begins to change at 15 s because SACOP dynamically adjusts the observing period via the op(i).  
Specifically, the average variation time of the observing period for the SACOP test is 5.2 ms. 
	 Figure 3 shows the number of dropped messages for varying numbers of CoAP servers.  When 
the number of devices is less than 10, no messages are dropped with either CoAP or SACOP.  
However, when there are more than 12 CoAP servers, the legacy CoAP begins to drop messages.  
Meanwhile, SACOP does not drop any messages throughout the entire simulation time. The 
average number of dropped messages of the legacy CoAP is 1587.1 while for the SACOP it is 0. 

Fig. 1.	 Observing period adjustment.
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4. 	 Conclusions

	 In this paper, we propose a SACOP that prevents buffer overflow at the CoAP client side 
by adjusting the observing periods of CoAP servers in a stepwise manner.  SACOP consists of 
overflow alert and observing period adjustment phases, in which a client alerts for buffer overflow 
by broadcasting a BoA message and the servers adjust their observing period by increasing or 
decreasing the op(i).  The simulation showed that SACOP achieves better performance in terms 
of the number of dropped messages than legacy CoAP.  Therefore, SACOP is expected to be an 
efficient solution for the congestion problem of IoT applications using WSNs. 
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Table 1
Simulation parameter.
Parameter Value Parameter Value
Payload 125 B op(0) 1.0
Queue size 1 MB op(1) 1.2
Clock rate 1 MHz op(2) 1.4
Simulation time 100 s op(3) 1.6
Threshold value 0.9 MB op(4) 1.8
Tobserv,init 10 ms op(5) 2.0
Max_msg_cnt 5 Number of servers 0–20

Fig. 2.	 (Color online) Variation of the observing 
period.

Fig. 3.	 (Color online) Variation of the number of 
dropped messages.


