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 In this study, we propose a novel coding method, called geometry permutation decoding 
(GPD), for square sensor topologies.  The GPD algorithm provides a two-dimensional geometry 
construction and decodes information sequences based on this construction.  The two-dimensional 
construction for square wireless sensor networks (WSNs) is suitable for employing channel coding, 
especially	product	codes	and	finite	geometry	codes,	and	for	detecting	multiple	error	patterns.	 	A	
majority	 logic	 decoding	 (MLD)	 is	 a	 less	 correcting	 efficient	 but	 simpler-to-implement	 decoding	
method.  To improve the drawback of the less correcting capacity, the GPD algorithm not only 
gives better bit error rates at low decoding complexity but also provides a new solution suitable 
for decoding in two-dimensional WSNs.  In particular, this decoding work in the two-dimensional 
WSNs is achieved over the bit level without a packet level so that the overhead in the network layer 
can be reduced.  

1. Introduction

 In his landmark paper in 1948, Shannon proved the existence of the limited bound over a 
noisy channel.(1)		Since	Shannon’s	work,	much	effort	has	been	focused	on	the	problem	of	devising	
efficient	 and	 fast	 encoding	 and	 decoding	 algorithms	 for	 error	 control	 in	 a	 noisy	 environment.		
Recent developments have contributed toward achieving reliability while diminishing complexity.  
In 1963, Massey(2)	 proposed	 a	 less	 efficient	 but	 simpler-to-implement	 decoding	 method	 called	
threshold decoding.  This method spawned some practical applications of linear codes to digital 
transmission over telephone, satellite, and radio channels.  Shortly thereafter, researchers also 
proposed a number of decoding algorithms that were relatively easy to implement for hard-decision 
decoding	of	cyclic	codes.		Majority	logic	decoding	(MLD)(3)	is	a	simple	and	effective	method	for	
decoding code classes in particular, such as cyclic codes.  Most codes with MLD found so far are 
cyclic	codes.		One	of	the	major	cyclic	codes	is	a	code	constructed	based	on	finite	geometries,	called	
Euclidean	geometries.		These	codes	are	well-known	finite	geometry	codes.		Finite	geometry	codes	
were	first	investigated	by	Rudolph	in	1967.(3)		Another	special	subclass	of	finite	geometries	codes,	
called Euclidean geometry (EG) low-density parity-check codes, was introduced by Kou and 
colleagues(4,5) in 2000.  MLD algorithms are hard-decision decoding algorithms that can be easily 
implemented.  MLD based on orthogonal parity check sums from the parity check matrix of a code 
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is a simple decoding method.(6)		The	error-correcting	capability	of	majority	logic	decodable	codes	
is based on the number of check sums.  These codes are nearly capable of correcting the error bits, 
which are about half the number of the check sums.  The parity check sums orthogonal on one bit 
can be used to estimate that bit or to decode that received digit.  The simplest and fastest decoding 
algorithm for error-correcting codes is the one-step MLD algorithm,(7,8) but it provides the worse 
decoding	efficiency	compared	with	other	decoding	algorithms	for	error-correcting	codes.
 In this study, we also propose a novel decoding method based on parity check sums, but 
the	method	 is	 not	majority-logic-based.	 	 This	method	 uses	 error	 patterns	 of	 2-flat	 or	 a	 plane	 as	
an alternative to orthogonal check sums.  There are many lines through one point with various 
gradients, i.e., independent lines, in a plane.  A plane can be constructed by two of these 
independent lines.  These planes constructed by independent lines lead to permutations of the 
received sequence and provide a variety of error patterns in two dimensions.  This work locates 
some error bits according to these error patterns as long as error bits are less than three in number.  
Proposed in this article is a method called the geometry permutation decoding (GPD).  In this study, 
the GPD algorithm is suitable for application to wireless sensor networks (WSNs) with clustering 
protocols.		Network	lifetime	is	an	important	issue	in	WSNs.		To	achieve	efficient	network	lifetime,	
one	 of	 the	 efficient	 protocols	 is	 the	 clustering	 scheme.	 	 Clustering	 schemes	 have	 some	 cluster	
heads (CHs) and some node numbers within a cluster.  CHs are fusion points for data aggregation, 
so that the actual data sent to the sink is reduced.  The CHs closest to the sink are burdened with 
a	heavy	relay	 traffic	load,	and	they	run	out	of	power	first.(9)  A merging of clustering and multi-
hop	communication	can	effectively	overcome	the	path	loss	effects.(10,11)  In general protocols, the 
packets are transmitted in network access, and the decoding scheme is often achieved in a medium 
access	control	layer.		Instead,	an	efficient	decoding	method	using	finite	geometry	constructed	over	
the bit level is proposed, called the GPD algorithm.  This scheme uses a localization technique in 
two dimensions constructed to correct the error patterns without employing packets transmitted in 
the network. 
 The rest of this paper is organized as follows.  In Sect. 2, we state our problem in wireless 
sensor	networks.		In	Sect.	3,	we	briefly	describe	our	major	work	on	the	proposed	GPD.		In	Sect.	4,	
we provide experimental results and constructive discussions.  Finally, we state our conclusions in 
Sect. 5.

2. Problem Statement

 In this section, we present a statement of the proposed problem and its solution.  Assume that 
there are three events in a two-tier data dissemination protocol shown in Fig. 1. 
	 In	 Fig.	 1,	 the	 field	 is	 partitioned	 into	 a	 grid	 of	 cells.	 	 These	 sensor	 nodes	 are	 classified	 into	
sixteen groups, and the CHs are located in the intersections on the grid.  Each cell is a d × d square 
area.  One CH propagates data announcements to the others.  Consider three events represented by 
a square on the grid, and the position of the CH for the three events is given by

 
{
(x + id, y + jd) |i, j ∈ Z+

}
, (1)

where (x,y)	 represents	 the	 coordinates	 for	 the	 events.	 	 In	 Fig.	 2,	 the	 sink	 starts	 by	 flooding	 its	
query with its primary close to a CH node.  This CH records the location through these nodes 
and forwards the query to its neighbour CH until the query reaches the events.  The packets are 
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returned to the CH close to the sink along the path that the query traverses.  Finally, the CH close 
to the sink forwards the packets to the sink through sensor nodes.  Low-energy adaptive clustering 
hierarchy (LEACH)(4)	 is	 one	 of	 the	first	 clustering	 schemes,	which	 plays	 a	 key	 role	 in	 reducing	
energy consumption and enhancing the network lifetime.  LEACH can provide a balance of energy 
consumption	between	these	nodes	in	the	field.		In	Fig.	2,	the	LEACH	protocol	can	be	achieved	for	
network access.
	 Assume	 that	 the	 sink	 in	 Fig.	 2	 is	 located	 in	 the	 centric	 field	 shown	 in	 Fig.	 3	 and	 the	 two-
dimensional tree topology in Fig. 3 is used.  In WSN, the cooperation between sensor nodes is 
an important ideal.  Instead of working in packet level, this study proposes a decoding method 
achieved in bit level.  This decoding scheme requires the cooperation between the CHs in Fig. 3, 
and consumes energy l'Et, where Et and l' denote the energy of one bit and the number of CHs, 
respectively.  Assume that a packet consists of l bits and the energy consumption is l'Et for a packet 
transmission.  Generally, l is considerably larger than l'.  Unlike the case with the general LEACH 
in this study, the transmitting data is not forwarded to the sink but uses the tree-routing topology 
as the routing scheme.  In addition, each sensor node sends exactly one bit to the sink without 
transmitting	packets.		The	aim	of	these	modifications	is	to	improve	the	power	consumption.	
	 The	 proposed	WSN	model	 shown	 in	Fig.	 3	 is	 a	 two-dimensional	 grid	 configuration,	 and	 the	
node close to the intersection in the two-dimensional WSN is to be a CH.  LEACH done in Refs. 9 
and 12 is a common cluster-based communication model for WSNs.  Because the proposed model 
is also a cluster-based WSN, LEACH is suitable for application to this work and we use a similar 
radio model as noted in Refs. 9 and 12.  In this case, the distance between the transmitter and the 
receiver for sending one bit is d, and the power consumption is given by  

 Et =


Eelec + ε f sd2, if d ≤ d0

Eelec + εtrd4, if d ≥ d0
, (2)

Fig. 1. (Color online) An example of a sensor 
network.
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Fig. 2. (Color online) Two-dimensional clustering 
topology for sensor network.
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where Eelec is the energy consumption of the wireless sensor node for transmitting and receiving 

bit data, and d0 =

√
ε f s/εtr.  Both the parameters εfs, free space, and the εtr, multiple path fading 

channel models, vary according to the distance between a sender and a receiver.  The cost of 
energy for the receiver is given by 

 Er = Eelec. (3)

 We assume an area m × m m2, and N is the number of nodes uniformly distributed over the 
square area.  The sink is at the centre of the two-dimensional network.  Each node in the cluster 
transmits one bit of data to the elected CH node.  The energy dissipated in the CH node during a 
round is given by(13)

 Eclu =
N
k
× Eelec +

N
k
× Ed + ε f s × d2

sink, (4)

where k denotes the number of clusters, Ed is the processing cost of a bit report to the sink, and 
dsink is the average distance between a CH and a sink.  The other sensor nodes are given by 

 Esen = Eelec + ε f s × d2
ch, (5)

where dch is the average distance between a cluster member and its CH, which is given by 

 d2
ch =

M2

2πk
. (6)

	 According	 to	 this	 network	model,	 the	 difference	 in	 the	 power	 consumption	 can	 be	 evaluated	
between the packet and the bit level.  When the lengths of the packet are quite large, the protocols 
for packet access consume more power.  Then, each sensor node generates a random number with 

Fig. 3. (Color online) The sink is located at the centre of a two-dimensional network.

Sink
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a	value	between	0	and	1	and	compares	it	to	a	predefined	threshold	T(n).  If the random value is less 
than T(n), the sensor node becomes a CH in that round; otherwise, it is a cluster member, and

 
T (n) =

P

1 − P
(
r mod

1
P

)∀n ∈ G,
 

(7)

where P is the percentage of CHs over all nodes in the network, r is the number of rounds of 
selection, and G is the set of nodes that are not selected in round 1/P.  
	 In	the	next	section,	a	new	decoding	scheme	using	finite	geometry	construction	over	bit	level	is	
proposed.  Our work results in low power consumption, along with the method discussed in Sect. 
2, because the consumption of the proposed method is inversely proportional to the length of the 
packet.

3. Decoding Using Two-Dimensional Error Patterns

	 In	this	section,	we	discuss	the	proposed	method	and	a	number	of	fundamental	finite	geometries.

3.1 Permutation of error patterns

 Consider all the roots {αi}	 in	 the	 finite	 field	Fm
2s.  The collection of the following 2s points, {

αi + α jβ | β ∈ F2s

}
, with β ∈ F2s constitutes a line in EG(m,2s), which passes through the point αi.  

There are (2ms	−	1)/(2s	−	1)	lines	in	EG(m,2s), which intersect at αi.  Moreover, {αj β} and {αi + αj β} 
do not have any common points, and these are called parallel lines.  In EG(m,2s), for every line 
passing the origin, there are 2ms −	s parallel lines shown in Fig. 4. 
 Let L1 = {αi + α1β1} and L2 = {αi + α2β2} be the two lines that have point αi in common.  A new 
plane	consisting	of	the	two	lines	is	defined	by

 P1,2 = L1 ⊕ L2 =
{
αi + α1β1 + α2β2

}
. (8)

 Because there are (2ms	−	1)/(2s	−	1)	lines	through	one	point,	the	number	C(2ms−1)/(2s−1)
2  of planes 

can be constructed.  Each plane consists of two parallel bundles shown in Fig. 5.
 The plane can be checked by eight lines and the obtained eight parity check equations.  The 
GPD algorithm uses these check sums to locate the error patterns.  Therefore, these planes 
constructed by lines through one point are permuted to a variety of two-dimensional matrices and 
the error patterns correspond to these planes.  To carry out the GPD method, this work employs 
EG codes of length 2ms	−	1.		We	construct	an	EG	code	with	a	parity	check	matrix	whose	null	space	
contains the incidence vectors of all the lines of EG(m,2s), which do not pass through the origin.  
Let α	be	a	primitive	element	of	the	finite	field	Fm

2s.  For example, let m = 3, s = 2, and μ = 0.  The 
finite	field	F3

22 may be regarded as the EG(3,22) over F22.  Let α be a primitive element in F3
22.  Let h 

be a nonnegative integer less than 63.  The generator polynomial g(x) of the (0,2)th-order EG code 

of length 63 has αh as a root if and only if 0 < max
0≤l<2

W22

(
h(l)
)
≤ 3  Hence, the (0,2)th-order EG code 

of length 63 is a (63,13) cyclic code.  In this work, we show that this code has total C5
2 = 10 planes 
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consisting of a variety of  two independent bases in some plane.  Consider the plane P ∈ EG
(
3, 22
)
 

that passes through the point α44: 

 P =



α44 α4 α35 α39

α8 α61 α53 α54

α24 α37 α43 α13

α10 α48 α36 α51


. (9)

 There are (24	−	1)/(22	−	1)	=	5	lines	in	the	plane	P, and these lines are through point α44.  Two 
independent lines can be constructed as a two-dimensional plane, and the number of these planes 
is 10 as follows:


L1 =

(
α44 α4 α35 α39

)

L2 =
(
α44 α8 α24 α10

), 


L1 =
(
α44 α53 α13 α48

)

L2 =
(
α44 α39 α4 α35

), 


L1 =
(
α44 α37 α36 α54

)

L2 =
(
α44 α39 α4 α35

)


L1 =
(
α44 α61 α43 α51

)

L2 =
(
α44 α39 α4 α35

) , 


L1 =
(
α44 α53 α13 α48

)

L2 =
(
α44 α10 α8 α24

) , 


L1 =
(
α44 α37 α36 α54

)

L2 =
(
α44 α10 α8 α24

)      
 (10)

L1 =
(
α44 α37 α36 α54

)

L2 =
(
α44 α10 α8 α24

) , 


L1 =
(
α44 α37 α36 α54

)

L2 =
(
α44 α53 α13 α48

), 


L1 =
(
α44 α61 α43 α51

)

L2 =
(
α44 α53 α13 α48

),

and 


L1 =

(
α44 α61 α43 α51

)

L2 =
(
α44 α37 α36 α54

).  

 Assume that there are three error bits in the plane P.  All error patterns permuted by these 
independent lines are illustrated in Fig. 6.  In Fig. 6, each error pattern has a row and a column as 
a syndrome pair.  These syndrome pairs can be divided into (1, 3), (3, 1), (3, 3), and (1, 1).  In the 

Fig. 5. The plane P consists of two parallel lines.Fig. 4. (Color online) The point intersects on one 
point and parallel lines.
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important	case	when	the	syndrome	pair	is	(3,	3),	the	three	error	bits	can	be	identified	according	to	
a row and a column syndrome.  In Fig. 6, the second pattern of the top corresponds to α44, α24, and 
α51.  Figures 7 and 8 are the error patterns for two error bits and one error bit, respectively. 
 Table 1 shows the all error patterns for which the number of error bits is less than 4.  If the 
number of error bits is equal to 0 or 1, the total number of error patterns is 10.  However, the 
situation in which the number of error bits is more than 1 is characterized by a variety of syndrome 
numbers, including (4, 6), (3, 6, 1), and (1, 4, 6). 
 The decoding procedures for the GPD algorithm based on the error patterns tabulated in Table 1 
can be achieved using the tree construction shown in Fig. 9.  The decoding procedures are divided 
into	three	steps.		The	first	is	to	estimate	the	category	of	the	syndrome	number.		The	category	of	the	
syndrome number may be even or odd.  If the syndrome of an even number is found, the decoding 

Fig. 6. Error patterns for three error bits in plane P.

Fig. 7. Error patterns for two error bits in plane P.

Fig. 8. Error patterns for one error bit in plane P.



652 Sensors and Materials, Vol. 29, No. 6 (2017)

tree is the one drawn on the left in Fig. 9.  The decoding tree constructed by odd syndrome patterns 
is	similar	to	that	of	even	patterns.		Although	the	GPD	algorithm	finds	only	the	syndrome	patterns	
for which the number of error bits is less than 4, the decoding plane can be randomly chosen in 
the EG(m,2s).  Because of the random property of error bits, the decoding plane chosen randomly 
can be regarded as a pseudo-random interleaver.  If the decoding algorithm is overall in EG(m,2s), 
a complete decoding procedure would be prohibitively complex; however, because more than one 
decoding	plane	is	used,	it	is	possible	to	employ	a	simple	decoding	procedure	for	each	2-flat	space	
in an iterative fashion, in which the soft decision is passed to the other.   
 The implementation of this decoding scheme can be simply achieved using memory and 
registers.	 	The	decoding	realization	 is	 implemented	 in	 two	steps.	 	A	message	bit	of	a	CH	is	first	
arranged as shown in the memory of Fig. 10.  It is possible to construct a memory by interleaving, 
that is, simply by arranging data from CHs into the rows of the memory and then permuting the 
data	 in	 the	memory	 as	 another	 decoding	 array.	 	 At	 the	 first	 step	 of	 encoding,	 each	 row	 of	 the	
memory array is encoded into a parity check sum.  At the second step of encoding, each of the 
columns	of	the	memory	formed	in	the	first	encoding	step	is	encoded	into	a	parity	check	sum	for	
all the columns.  For the example in Fig. 6, a pattern of three errors at the distributed corners of 
a triangle gives two errors in each of the two rows or columns, and the other may be in any one 
row or column.  This error pattern is not correctable by simple correction on rows and columns.  

Table 1
Error pattern for error bits less than 4.

Number of 
error bits

Error pattern Number of total 
syndromeRow syndrome Column syndrome

0 0 0 10 10
1 1 1 10 10

2 2 0  4 102 2  6

3
1 1  3

101 3  6
3 3  1

3 1 3  4 103 3  6

Fig. 9. Decoding tree for the GPD algorithm.

Even number syndrome Odd number syndrome

(0,0)

1 0

1 0

1 0

1 0

1 0

1 0
(0,2)

(2,2) X

(1,1)

(1,3)

(3,3) X

Number=10

Number=6

Number=10

Number=6 or 1
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Nevertheless, a simple permutation in a variety of two-dimensional memory composed of two lines 
in	finite	geometry	can	be	very	effective.		
	 Permuting	memory	 constructed	 by	 finite	 geometry	 can	 easily	 be	 generalized	 by	 interleaving	
several	 different	 codes	 of	 the	 same	 length.	 	 The	 decoding	 efficiency	 depends	 on	 the	 decoding	
capacity	required	by	different	codes.	

3.2 Computational complexity

 Although the parity check matrix for EG codes forms a sparse matrix, the decoding algorithm 
can use a sum-product algorithm to achieve good decoding error probabilities.  EG codes with 
SPA	 algorithms	 suffer	 a	 disadvantage	 in	 decoding	 complexity	 in	 high-dimensional	 space.	 	 This	
study proposed a way of improving the issue of decoding algorithms using subconstruction over 
EG(m, 2s).  If the EG(m, 2s)	is	large,	the	dimension	of	the	plane	is	still	sufficiently	small	to	enable	
low-complexity decoding.  The parity check sums can also be found using the constructions of the 
lines in the plane. 
 The method proposed in this study can reduce the decoding complexity more than other 
decoding algorithms.  The number of parity check sums for MLD decides the complexity 
associated with the line construction in EG(m, 2s).  The decoding in some points for MLD needs (2ms 
−	1)/(2s	−	1)	lines,	and	therefore	MLD	can	be	capable	of	correcting	[(2ms	−	1)/(2s	−	1)/2]	bits.		The	
number	of	check	sums	is	also	equal	to	[(2ms	−	1)/(2s	−	1)/2].	 	The	complexity	of	GPD	is	required	
to locate the check sums of two dimensions.  However, the GPD algorithm requires providing 
C(2ms−1)/(2s−1)

2 	check	sums	of	two	dimensions	to	locate	the	error	patterns.		The	number	for	finding	
the check sums for the MLD algorithm is 

 CMLD(m, s) = (2ms −	1)2/(2s −	1). (11)

For the GPD algorithm, the complexity is 

Fig. 10. Implementation of two-dimensional decoding.
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 CGPD(m, s) = 2s+1C(2ms−1)/(2s−1)
2 . (12)

 Moreover, the proposed method can also be decoded using iteration decoding procedures.  After 
the partial received sequence is decoded using the GPD algorithm, we can choose the decoding 
plane again to decode based on the GPD algorithm.  A GPD with an iterative procedure not only 
further improves the decoding error probability but also controls the complexity of the GPD 
algorithm.

4. Simulation Results

 The experimental results demonstrate how the decoding performance for the GPD algorithm 
in a wireless sensor network works.  Consider a wireless sensor network consisting of 16 clusters 
uniformly	 dispersed	 over	 a	 field	 to	 continuously	monitor	 the	 environment,	 as	 drawn	 in	 Sect.	 2.		
The	sink	is	 located	in	the	center	of	the	field.	 	These	sensor	nodes	are	location-unaware	and	have	
the	same	capabilities	and	resources.		Each	node	in	the	field	also	has	a	unique	identifier.		Nodes	can	
act	 in	 inactive	node	or	sleep	mode.	 	First,	when	three	events	occur	 in	 the	field	at	 the	same	time,	
the sensor node closest to these events transmits bit data to the CH node.  All CHs broadcast their 
data to other CHs.  Then, each CH has the data of the remaining CHs.  The CHs can evaluate the 
collected data using the GPD algorithm and decode them.  Thus, the processor in the CH is capable 
of	decoding	these	three	error	patterns	resulting	in	the	channel.		This	study	uses	a	simplified	mode,	
as noted in Ref. 9, for communication energy consumption.  This study works at the bit level 
instead of packet level.  A network of 100 sensor nodes deployed uniformly over an area of size (100 
× 100 m2)	with	a	sink	located	at	position	(50,	50)	 is	designed.	 	For	simplification,	an	ideal	MAC	
layer and binary symmetric channel are considered.  The environmental parameters are listed in 
Table 2.
 In the simulation, we assume a wireless sensor network consisting of number nodes and cluster 
nodes.  The cluster members use a single point to communicate with the CH node.  Figure 11 
shows that the number of dead nodes per round increases as the number of rounds increases. 

Table 2
Propagation characteristics of simulation parameters.
Parameter Value Unit
Location of sink (50,50) m
N 100 number
Eelec 0.05 µJ/bit
d0 86 m
εfs 10 pJ/bit/m3

εtr 1.3 nJ/bit/m4

Er 0.05 µJ/bit
Eori 500 mJ Fig. 11. Number of dead nodes per round.
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 Here, we only simulate the energy consumption of the proposed decoding method for our sensor 
network, and the other environment parameters are the same as those of the general set.  This work 
can achieve the network lifetime until close to 1500 rounds when performing the simulation for the 
GPD algorithm.  Figure 12 shows that the energy consumption of one CH node runs down until it 
is	dead.		The	energy	consumption	of	a	cluster	node	may	be	different	depending	on	the	topology.	
	 In	the	second	experiment,	the	first	task	was	to	address	the	complexity	problem	of	constructing	
finite	 geometry	 codes	 with	 GPD	 decoding,	 as	 shown	 in	 Table	 3.	 	 In	 the	 experiment,	 the	 GPD	
algorithm was compared with the MLD algorithm.  The operator of check sums for the GPD 
and MLD algorithms is given by 22s × C(2ms−1)/(2s−1)

2  and (2ms	 −	 1)2/(2s	 −	 1),	 respectively.	 	 The	
simulation results are shown in Table 3.
 The functions of m and s	 determine	 the	code	 size.	 	When	 the	 size	of	finite	geometry	 is	m > 
4 and s	>	3,	 the	experimental	 results	are	difficult	 to	simulate	and	 implement	owing	 to	 their	high	
complexity.  Table 3 shows that the check sums of the GPD algorithm are similar to those of the 
MLD algorithm, i.e., both complexities are comparable.  The second task was to demonstrate 
simulation	results	using	the	finite	geometry	code.		Let	m = 2, s = 2, and μ	=	0.		The	finite	field	F2

22 
may be regarded as the EG(2, 22) over F22,	 and	 the	generator	polynomial	of	 the	finite	geometry	
code of length 15 is g(x) = 1 + x4 + x6 + x7 + x8.  This code is an (15, 7) Bose Ray-Chaudhuri 
Hocquenghem	(BCH)	code	and	the	two-dimensional	EG	code	is	the	simplest	finite	geometry	code.		
This code has a minimum distance of 5 and rate R = 0.4667.  The error performance with the 
MLD and GPD algorithms is shown in Fig. 13.  We see that MLD and GPD provide for less coding 
gain over the binary channel but require the least decoding complexity.  With GPD, this code is 
capable of correcting 3 or fewer errors.  The MLD gives less error performance than the GPD.  In 
fact,	the	GPD	can	use	iteration	decoding	to	enhance	the	error	performance.		This	method	offers	a	
good	trade-off	between	error	performance	and	decoding	complexity.		From	Fig.	13,	we	see	that	the	
GPD achieves about 0.2 dB coding gain over the MLD at various bit error rates (BERs) with some 
additional computational complexity. 

Table 3
Comparison of computational complexity between 
MLD and GPD.

m s GPD MLD
2 2           80           75
2 3         576         567
2 4       4352       4335
2 5     33792     33759
4 2       1680       1323
4 3     42048     37303
4 4 1188096 1117935
5 2     28560     21675
5 3 2733120 2395575

Fig. 12. Energy consumption of one node as a 
function of number of rounds.
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5. Conclusions

 In this report, we propose a novel decoding method based on partial geometry construction for 
error control coding in a grid-based sensor network.  Generally, the WSNs transmit data using a 
packet form.  In this study, the proposed method was used in bit level, and the simulation of energy 
consumption	was	run	using	bit	streams.		We	used	2-flat	construction	and	two-dimensional	check	
sums to locate error patterns.  The proposed method has not only low decoding complexity but also 
good	error	efficiency	for	hard	decoding.		An	iterative	decoding	procedure	was	used	in	this	work.		
Moreover, the proposed methods reduced the operational complexity for error control coding and 
provided superior BER performance in comparison with other decoding algorithms.
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