Young Researcher Paper Award 2023
🥇Winners

Notice of retraction
Vol. 34, No. 8(3), S&M3042

Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 30, Number 9(2) (2018)
Copyright(C) MYU K.K.
pp. 2085-2100
S&M1662 Research Paper of Special Issue
https://doi.org/10.18494/SAM.2018.1955
Published: September 28, 2018

Ultrahigh-sensitivity Graphene-based Strain Gauge Sensor: Fabrication on Si/SiO2 and First-principles Simulation [PDF]

Mohammed Gamil, Ahmed M. R. Fath El-Bab, Ahmed Abd El-Moneim, and Koichi Nakamura

(Received April 4, 2018; Accepted July 23, 2018)

Keywords: graphene, chemical vapor deposition, strain gauge, gauge factor, piezoresistive sensors, MEMS devices, first-principles calculation

Monolayer and multilayer graphene films have been grown on a Cu substrate by chemical vapor deposition (CVD) and then transferred onto a SiO2/Si substrate using polymethyl methacrylate (PMMA) to fabricate an ultrasensitive graphene-based strain gauge sensor. The graphene films were patterned using a CO2 laser beam. The sensitivity and temperature dependence of the gauge factor (GF) of the fabricated sensors were examined at different applied strains and operating temperatures up to 0.05% and 75 ℃, respectively. The fabricated gauges based on monolayer and multilayer graphene films show stable GFs of 255 and 104 within the applied temperature range, respectively. The patterning technique provides an interesting, low-cost, fast, and high-throughput process to realize scalable microfabrication for highly sensitive strain sensors with good temperature stability based on graphene piezoresistivity. A theoretical simulation of the GF of monolayer graphene has also been carried out on the basis of first-principles calculation. Simulation results follow the measured GFs in our experiment and other references.

Corresponding author: Koichi Nakamura


Cite this article
Mohammed Gamil, Ahmed M. R. Fath El-Bab, Ahmed Abd El-Moneim, and Koichi Nakamura, Ultrahigh-sensitivity Graphene-based Strain Gauge Sensor: Fabrication on Si/SiO2 and First-principles Simulation, Sens. Mater., Vol. 30, No. 9, 2018, p. 2085-2100.



Forthcoming Regular Issues


Forthcoming Special Issues

Applications of Novel Sensors and Related Technologies for Internet of Things
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)
Call for paper


Special Issue on Advanced Data Sensing and Processing Technologies for Smart Community and Smart Life
Guest editor, Tatsuya Yamazaki (Niigata University)
Call for paper


Special Issue on Advanced Sensing Technologies and Their Applications in Human/Animal Activity Recognition and Behavior Understanding
Guest editor, Kaori Fujinami (Tokyo University of Agriculture and Technology)
Call for paper


Special Issue on International Conference on Biosensors, Bioelectronics, Biomedical Devices, BioMEMS/NEMS and Applications 2023 (Bio4Apps 2023)
Guest editor, Dzung Viet Dao (Griffith University) and Cong Thanh Nguyen (Griffith University)
Conference website
Call for paper


Special Issue on Piezoelectric Thin Films and Piezoelectric MEMS
Guest editor, Isaku Kanno (Kobe University)
Call for paper


Special Issue on Advanced Micro/Nanomaterials for Various Sensor Applications (Selected Papers from ICASI 2023)
Guest editor, Sheng-Joue Young (National United University)
Conference website
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.